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I. Skew-product flows. A flow n on a product space X x Y is said to 
be a skew-product flow if there exist continuous mappings cp :X x Y x T 
-» X and G\Y x T -• Y such that 

n(x9 y, t) = (<p(x, y, t)9 a(y, t)) 

where a is itself a flow on Y and T is a topological group. In other words 
the natural projection p:X x Y -+ Y is a homomorphism of the trans­
formation group (X x y, T, 7i) onto (y, T, cr). 

Skew-product flows arise in a natural way in the study of ordinary 
differential equations x' = g(x, t) (cf. [6] and [7]). In this case the group T 
would be the real numbers and Y would be a topological function 
space containing g and closed under time-translations. The flow a would 
be given by <x( ƒ, T) = ft where /T(x, t) = ƒ (x, T + £). The space X would 
be the phase space for the differential equation, usually X is the Euclidean 
space Rn or perhaps some n-dimensional manifold, and cp(x9 ƒ, t) would 
represent the solution of x' = ƒ (x, t) passing through x at time t = 0. 
(We assume that all differential equations in Y give rise to unique solu­
tions, although some of our results are valid without this restriction 
(cf. [8]).) 

Now assume that y is a compact minimal set under the flow o and 
let M a X x y be a compact invariant set of the skew-product flow. 
Motivated by the above model for differential equations we ask : When 
can certain structures be lifted from Y to M? For example, if we assume 
that y is an almost periodic minimal set (that is, the flow G is equicon-
tinuous on Y) under what conditions will M contain an almost periodic 
minimal set ? 

We shall say that the flow n has the distal property on M if for any 
ye Y and x l 5 x 2 e l with x t ^ x2, (xl5y)e M and (x2,y)eM there is an 
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a = OL(X19X2, y) > 0 such that d((p(xl9y,t), <p(x2,y,t)) ^ a for all teR+. 
Here d denotes a metric on X. (For our purposes the R+ above may be 
replaced by JR".) 

We can now prove the following theorem [4], [5] : 

THEOREM 1. Assume that Y is a compact uniform Hausdorff space and 
the flow a is minimal on Y. Assume that X is metrizable and T =R. Let 
M a X x Y be a compact invariant set for the flow n and assume either : 

(I) card(p_1(};) n M) = N < GO for all yeY, where N does not depend 
on y, or 

(II) card(p"1(};o) n M) = AT < oo for some y0 e Y and n has the distal 
property on M. 

Then M is an N-fold covering space of Y. Also M can be written as the 
finite union of minimal sets. If in addition, Y is almost periodic minimal 
then every minimal set in M is also almost periodic. 

The assumption that X be metrizable (and not merely a uniform space) 
is used in a crucial way in our proof. The fact that Y can be a nonmetrizable 
uniform space does arise in differential equations when Y has a weak 
topology. In the case that both X and Y are metrizable then Theorem 1 
is a consequence of a more general result which we now describe. 

II. Finite extensions of minimal transformation groups. Recall that a 
continuous mapping p of a transformation group (W9 T, n) onto a trans­
formation group (Y, T, a) is said to be a homomorphism if p commutes 
with t, that is, if a(p(w), t) = p(n(w, t)). Also p is said to be a homomorphism 
of distal type if whenever w1,w2ep~1(y) with wx # w2, there is an 
a = a(w1? w2) > 0 such that d(n(wu t\ n(w2, t)) ^ a for all t e T. The space 
W is said to be a finite (N-to-1) extension of Y if ca rdp" 1 ^) = AT < oo 
for all yeY. 

The next result places no restriction on the topological group T. 

THEOREM 2. Let W and Y be compact metric spaces where the flow G 
on Y is minimal. Let p:W -* Y be a homomorphism. Then the following 
statements are equivalent : 

(I) W is a finite {N-to-1) extension ofY. 
(II) p is of distal type and card p~ 1(y0) = N for some y0 G Y. 

(III) W is an N-fold covering space of Y with covering projection p. 

In [2, p. 56], R. Ellis asks whether an equicontinuous structure on Y 
can be lifted to a finite (AT-to-1) extension of Y. We can give an affirmative 
answer, but now we must place a rather mild restriction on the group T. 

THEOREM3. Let p:W -> Y be a homomorphism where W and Y are 
compact metric spaces. Assume the following: 
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(I) (Y, T, G) is equicontinuous. 
(II) W is an N-fold covering space of Y with covering projection p. 

(Ill) The group T has the property that there is a compact subset K a T 
such that T is generated by any open neighborhood ofK. 

Then (W, T, 71) is equicontinuous. 

The class ZT of topological groups that satisfy condition (III) above is 
very large. 9~ contains all compactly generated groups, all connected 
groups, and 3~ is closed under arbitrary products with the standard 
product topology. However, &~ does not include infinitely generated 
discrete groups. 

III. Almost periodic differential equations. Let us now return to the 
differential equation model described in §1, where we now assume that 
Y is an almost periodic minimal set. This means that Y is the hull H(g) 
generated by a differential equation x' = g(x, t) where g is uniformly 
Bohr almost periodic in t (cf. [7]). The problem of determining whether 
a set M c X x Y contains an almost periodic minimal set is the same 
as asking whether the given differential equation x' = g(x, t) has an almost 
periodic solution (cf. [7]). If x' = g(x, t) has a positively compact solution 
(p{x, g, t)9 that is, q> remains in a compact set for t ^ 0, then the ca-limit 
set M = tyjcg) is a compact invariant set in X x Y. If the positively com­
pact solution (p(x, g, t) is uniformly stable [7] then we can show that the 
solutions have the distal property on M, and that M is a minimal set. 
For an application of Theorem 1, it remains only to check the finiteness 
condition card {p~1{y0) n M) = N < 00 for some y0 e Y. However, if the 
positively compact solution c/>(x, g, t) is uniformly asymptotically stable 
then we can verify this finiteness condition; and hence M is an N-fold 
covering of Y and there exists an almost periodic solution of x' = g(x, t). 
Thus the theorems of R. K. Miller [3] and T. Yoshizawa [9] are special 
cases of Theorem 1. 

The theory of L. Amerio [1] is also included in Theorem 1. He assumed 
a separatedness condition which is much stronger than the distal property 
used in Theorem 1. This separatedness condition already implies the 
finiteness condition card {p~1{y0) n M) = N < 00. 

For the scalar-valued differential equation x' = g(x, t) we can prove 
the following result. 

THEOREM 4. Let x' — g(x, t) be a scalar-valued differential equation where 
g is uniformly Bohr almost periodic in t. If there exists a positively bounded 
uniformly stable solution cp(x,g, t\ then the co-limit set M = Q ( x 0 is a 
1-cover of Y and M is an almost periodic minimal set. 

This result is interesting because we are able to drop the asymptotic 
stability assumption which Miller and Yoshizawa used in their theories. 
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