A COMPLETE BOOLEAN ALGEBRA OF SUBSPACES WHICH IS NOT REFLEXIVE

BY JOHN B. CONWAY

Communicated by Paul R. Halmos, December 27, 1972

This note provides a negative answer to a question raised by P. R. Halmos [2, Problem 9]. For the convenience of the reader, the terminology necessary to understand the question is presented here. Let \mathcal{L} be a lattice of subspaces of a Hilbert space \mathcal{H} and let Alg \mathcal{L} be the algebra of all bounded operators in $\mathcal{B}(\mathcal{H})$ that leave each subspace in \mathcal{L} invariant. If $\mathcal{L} \subset \mathcal{B}(\mathcal{H})$, let Lat \mathcal{L} be the lattice of all subspaces of \mathcal{H} that are left invariant by each operator in \mathcal{L} . A lattice \mathcal{L} is reflexive if Lat Alg $\mathcal{L} = \mathcal{L}$. If \mathcal{L} is a reflexive lattice and $\{P_i\}$ is a net of orthogonal projections such that $P_i(\mathcal{H}) \in \mathcal{L}$ for each i and $P_i \to P$ in the strong operator topology then $P(\mathcal{H}) \in \mathcal{L}$; in other words, \mathcal{L} is strongly closed. It is true that a strongly closed lattice of subspaces is a complete lattice, but the converse is false.

A Boolean algebra of subspaces is a distributive lattice \mathcal{L} such that for each M in \mathcal{L} there is a unique M' in \mathcal{L} such that $M \cap M' = (0)$ and $M \vee M' \equiv (M + M')^- = \mathcal{H}$. (Note that it is only required that \mathcal{H} be the closure of M + M'.) Problem 9 of [2] asks: Is every complete Boolean algebra of subspaces reflexive? The answer is no, and this is shown in this paper by giving a complete Boolean algebra of subspaces which is not strongly closed. In one sense this answer seems unsatisfactory because a new question arises: Is every strongly closed Boolean algebra of subspaces reflexive? In another sense the answer is satisfying because the original question was the proper one to ask. The property of completeness is a lattice theoretic one, while the property of being strongly closed is not.

For the remaining terminology the reader is referred to [4] and other standard references. If $X = [0, 2\pi]$, let μ be a positive singular measure on the collection $\mathscr A$ of Borel subsets of X. For A in $\mathscr A$ define

$$\varphi_A(z) = \exp\left(-\int_A \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta)\right), \qquad |z| < 1,$$

and put $\varphi = \varphi_X$. Each φ_A is an inner function, and φ_A is a divisor of φ_B if and only if $A \subset B$. $\mathscr{H} = H^2 \ominus \varphi H^2$ and, for each A in \mathscr{A} , $M_A = \varphi_A H^2 \ominus \varphi H^2$.

$$(1) M_A \cap M_B = M_{A \cup B}.$$

In fact, $\varphi_A H^2 \cap \varphi_B H^2 = \psi H^2$ where ψ is the least common multiple of φ_A and φ_B . It is easy to check that $\psi = \varphi_{A \cup B}$ and from this it follows that (1) holds. Similarly

$$(2) M_A \vee M_B = M_{A \cap B}.$$

It follows from (1) and (2) that $\mathcal{L} = \{M_A : A \in \mathcal{A}\}\$ is a distributive lattice; and, with $M'_A = M_{X-A}$, \mathcal{L} is a Boolean algebra of subspaces of \mathcal{H} .

LEMMA. $\mathcal{L} = \{M_A : A \in \mathcal{A}\}\$ is a complete Boolean algebra.

PROOF. It suffices to show that if $\mathscr{B} \subset \mathscr{A}$ then there is an A in \mathscr{A} with $M_A = \bigcap \{M_B : B \in \mathscr{B}\}$. Because of (1), \mathscr{B} may be assumed to be closed under finite unions. If $\beta = \sup \{\mu(B) : B \in \mathscr{B}\}$ then there is an increasing sequence $\{B_n\}$ in \mathscr{B} such that $\beta = \lim_n \mu(B_n)$. If $A = \bigcup \{B_n : n \ge 1\}$ then $\mu(A) = \beta$ and $\mu(B - A) = 0$ for every B in \mathscr{B} . It is claimed that $\varphi_A = 1$.c.m. $\{\varphi_B : B \in \mathscr{B}\}$. In fact, if $B \in \mathscr{B}$ then $\varphi_A = \varphi_{A-B}\varphi_B$ since $\mu(B-A) = 0$. Also, if ψ is an inner function that is a multiple of φ_B for each B in \mathscr{B} then, for every integer n, $\psi = \varphi_{B_n}\psi_n$ for some inner function ψ_n . But $\varphi_{B_n}(z) \to \varphi_A(z)$ for every z so it follows that $\psi_n(z) \to \widetilde{\psi}(z)$ for some inner function $\widetilde{\psi}$. Hence $\psi = \varphi_A\widetilde{\psi}$ and $\varphi_A = 1$.c.m. $\{\varphi_B : B \in \mathscr{B}\}$. Consequently,

$$M_A = \bigcap \{M_B : B \in \mathcal{B}\}.$$

THEOREM. $\mathcal{L} = \{M_A : A \in \mathcal{A}\}$ is reflexive if and only if μ is a purely atomic measure.

PROOF. If μ is purely atomic then \mathcal{L} is an atomic Boolean algebra and hence is reflexive [3]. To prove the converse, two additional results are needed. The first of these can be found in [5] although the proof contains an error (which can be rectified). However, in the case under consideration (where $L^1(\mu)$ is separable) the proof is valid. (Also see [1].)

THEOREM A. Let (X, \mathcal{A}, μ) be a decomposable nonatomic measure space and let $f \in L^{\infty}(X, \mathcal{A}, \mu)$ such that $0 \le f \le 1$. Then there is a sequence $\{A_n\}$ in \mathcal{A} such that $\chi_{A_n} \to f$ in the weak-star topology of L^{∞} .

THEOREM B. For each inner function q let E_q be the orthogonal projection of H^2 onto qH^2 . If q, q_1, q_2, \ldots are inner functions such that $q(z) = \lim_n q_n(z)$ for |z| < 1 then $E_{q_n} \to E_q$ strongly.

PROOF. If z^m is the function that assumes the value a^m at a then it is easily verified that

$$E_q(z^m) = q \sum_{k=0}^m \frac{1}{k!} \overline{q^{(k)}(0)} z^{m-k}.$$

It follows that $E_q(z^m)(a) = \lim_n E_{q_n}(z^m)(a)$ for |a| < 1. This gives that $E_{q_n}(z^m) \to E_q(z^m)$ weakly in H^2 . Since polynomials are dense in H^2 , $E_{q_n} \to E_q$ in the weak operator topology. But for projections weak convergence is equivalent to strong convergence, and the proof is complete.

Suppose μ is not purely atomic; the proof of the main theorem will be completed by showing that \mathcal{L} is not strongly closed. There is a set A in \mathscr{A} that contains no atoms for μ and with $\mu(A) > 0$. Let f be any Borel function such that $0 \le f \le 1$, f(x) = 0 for x in X - A, and 0 < f(x) < 1on a set of positive measure. According to Theorem A there is a sequence $\{A_n\}$ in \mathscr{A} such that $A_n \subset A$ and $\chi_{A_n} \to f$ in the weak-star topology of $L^{\infty}(\mu)$. For each z, |z| < 1,

$$\varphi_{A_n}(z) \to \psi(z) = \exp\left(-\int \frac{e^{i\theta} + z}{e^{i\theta} - z} f(\theta) d\mu(\theta)\right).$$

Theorem B implies that $E_{\varphi_{A_n}} \to E_{\psi}$ strongly; so $E_{\varphi_{A_n}} - E_{\varphi} \to E_{\psi} - E_{\varphi}$ strongly. It is straightforward to show that if P_A is the projection of \mathcal{H} onto M_A , then $P_{A_n} \to P_{\psi}$, where P_{ψ} is the projection of \mathcal{H} onto $\psi H^2 \ominus \varphi H^2$. Since $\psi H^2 \ominus \varphi H^2 \neq M_A$ for any A, the proof is complete.

Finally, it should be pointed out that \mathcal{L} is isomorphic to the reflexive Boolean algebra Lat T, where T is multiplication by the independent variable on $L^2(X, \mu)$.

REFERENCES

- J. B. Conway and J. Szücs, The weak sequential closure of certain sets of extreme points in a von Neumann algebra, Indiana Univ. Math. J. 22 (1973), 763-768.
 P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
- MR 42 # 5066.
- Reflexive lattices of subspaces, J. London Math. Soc. (2) 4 (1971), 257-263. MR 44 # 5808.
- 4. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 24 # A2844.
- 5. R. B. Holmes, A geometric characterization of nonatomic measure spaces, Math. Ann. 182 (1969), 55-59. MR 40 #1571.

DEPARTMENT OF MATHEMATICS, INDIANA UNIVERSITY, BLOOMINGTON, INDIANA 47401