PRIMES WHICH ARE REGULAR FOR ASSOCIATIVE H-SPACES

BY JOHN R. UNDERWOOD

Communicated by M. L. Curtis, August 30, 1972

This note summarizes some results on associative H-spaces with the homotopy type of a finite CW-complex. Such spaces are called *finite-dimensional* associative H-spaces. The main theorem generalizes a result of Serre [5] for the simple classical groups.

A well-known theorem of Hopf [2] states that the rational cohomology $H^*(X, \mathbf{Q})$ of a finite-dimensional H-space is an exterior algebra $\Lambda(X_{2N_1-1}, \ldots, X_{2N_K-1})$, where the dimension of X_{2N_i-1} is $2N_i-1$ and $N_1 \leq \cdots \leq N_K$. With this in mind, suppose that X is a finite-dimensional associative H-space with

$$H^*(X, \mathbf{Q}) = \Lambda(X_{2N_1-1}, \dots, X_{2N_K-1}), \text{ where } N_1 \leq \dots \leq N_K.$$

Form the space

$$Y = S^{2N_1-1} \times \cdots \times S^{2N_K-1}.$$

One says that a prime p is regular for X if there is a function $f: Y \to X$ which induces an isomorphism in cohomology with $\mathbb{Z}/p\mathbb{Z}$ coefficients. The following theorem is due to Serre [5].

THEOREM. If X is a simply connected, simple, compact, connected classical group with rational cohomology as above, then p is regular for X if and only if $p \ge N_K$.

Such groups are of the form SU(N), Sp(N) or Spin(N). Serre's proof is a case by case study of these groups. Various generalizations of this theorem have appeared in the literature. Kumpel [3], for example, verified that the conclusion of Serre's theorem is true for the exceptional Lie groups, G_2 , F_4 , E_6 , E_7 and E_8 . I am announcing a result which generalizes Serre's to finite-dimensional associative H-spaces. Needless to say, certain mild restrictions are necessary. For example, certain assumptions about primitive generation are necessary.

Suppose that X is an H-space with multiplication

$$X \times X \stackrel{\mu}{\to} X$$
.

AMS (MOS) subject classifications (1970). Primary 55D10, 55D35; Secondary 55F35, 55G25.

Let p_1 and p_2 be the projections

$$X \times X \xrightarrow{p_1} X$$

onto the first and second factors, respectively. One says that an element $x \in H^*(X, R)$ is *primitive* if

$$\mu^*(x) = p_1^*(x) + p_2^*(x).$$

 $H^*(X, R)$ is primitively generated if it is generated by primitives as an R-algebra.

I can now state the main theorem.

Theorem I. Let X be a simply connected associative H-space of finite dimension with

$$H^*(X, \mathbf{Q}) = \Lambda(X_{2N_1-1}, \dots, X_{2N_{\kappa}-1}), \text{ where } N_1 \leq \dots \leq N_{\kappa}.$$

Let p be a prime. Then p is regular for X if and only if

- (1) $p \geq N_K$,
- (2) $H^*(X, \mathbb{Z}/p\mathbb{Z})$ is primitively generated,
- (3) $H^*(X, \mathbb{Z})$ has no p-torsion.

Larry Smith [6] has shown that (1)–(3) are sufficient for p to be a regular prime; so the only remaining point is the necessity of the conditions. Conditions (2) and (3) are immediate and (1) is handled by the following proposition.

PROPOSITION. With notation as above, if $p < N_K$, p a prime, then p is not regular for X.

To prove this, one constructs a space $X_{(p)}$ called the localization of X at the prime p (see Sullivan [9] for details). One needs the facts that $H^*(X_{(p)}, \mathbb{Z}) \approx H^*(X, \mathbb{Z})_{(p)}$ where the latter denotes the group-theoretic localization (Atiyah and Macdonald [1]). If X is an associative H-space then so is $X_{(p)}$ (Mislin [4]); and finally, if, given the above notation, p is regular for X, then $X_{(p)} \simeq Y_{(p)}$. The Proposition now follows from

THEOREM II. If $Y \simeq S^{2N_1-1} \times \cdots \times S^{2N_K-1}$, where $N_1 \leq \cdots \leq N_K$ and p is an odd prime less than N_K , then $Y_{(p)}$ is not an associative H-space.

The proof, which employs Stasheff's notion of an A_p -structure [7], is essentially an Adam's operation computation.

The following proposition is a scholium.

PROPOSITION. Let $\alpha \in \pi_7(BSU(3))$ classify the principal fibration

 $SU(3) \rightarrow SU(4) \rightarrow S^7$, let E_3 be the induced fibration in

$$SU(3) = SU(3) = SU(3)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$E_3 \longrightarrow SU(4) \longrightarrow *$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^7 \longrightarrow \stackrel{3}{\longrightarrow} S^7 \longrightarrow B(SU(3))$$

then E_3 is not a homotopy associative H-space.

This answers Question 17 in a list of questions presented to the Neuchatel Conference on H-spaces, August 1970 [8].

REFERENCES

- 1. M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-
- Wesley, Reading, Mass., 1969. MR 39 # 4129.

 2. H. Hopf, Über die Topologie der Gruppen-Mannigfaltigkeiten und ihre Verallgemeinerungen, Ann. of Math. (2) 42 (1941), 22–52. MR 3, 61.
- 3. P. G. Kumpel, Lie groups and products of spheres, Proc. Amer. Math. Soc. 16 (1965), 1350–1356. MR 32 #2507.

 4. G. Mislin, H-spaces mod p. I, Lecture Notes in Math., vol. 196, Springer-Verlag, Berlin and New York, 1971, pp. 5–10.
- 5. J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258-294. MR 15, 548.

 6. Larry Smith, Spherical and primitive homology classes in topological groups, Topology 8
- (1969), 69–80.
- 7. J. D. Stasheff, *Homotopy associativity of H-spaces*. I, II, Trans. Amer. Math. Soc. 108 (1963), 275–312. MR 28 # 1623.
- 8. ——, H-space problems, Lecture Notes in Math., vol. 196, Springer-Verlag, Berlin and New York, 1971, pp. 122–136.
 - 9. Dennis Sullivan, Geometric topology. I, M.I.T., Cambridge, Mass., 1970 (notes).

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77001