STOCHASTIC INTEGRALS AND PARABOLIC EQUATIONS IN ABSTRACT WIENER SPACE

BY HUI-HSIUNG KUO1 AND M. ANN PIECH2 Communicated by Lee A. Rubel, September 6, 1972

Kuo [2] has developed a theory of stochastic integrals and Piech [3] has established the existence of fundamental solutions of a class of parabolic equations, both working within the context of abstract Wiener space. In this note we establish the relationship between the work of Kuo and Piech, and as a consequence of this relationship we obtain a uniqueness theorem for fundamental solutions. We also provide a new proof of the nonnegativity and semigroup properties of fundamental solutions.

Let H be a real separable Hilbert space, with inner product (,) and norm $|\cdot|$; let $||\cdot||$ be a fixed measurable norm on H; let B be the completion of H with respect to $\|\cdot\|$; and let i denote the natural injection of H into B. The triple (H, B, i) is an abstract Wiener space in the sense of Gross [1]. We may regard $B^* \subset H^* \approx H \subset B$ in the natural fashion. A bounded linear operator from B to B^* may thus be viewed as an operator on B or, by restriction to H, as an operator on H. The restriction to H of a member T of $L(B, B^*)$ is of trace class in $L(H) (\equiv L(H, H))$ and

$$||T_{|H}||_{\operatorname{Tr}} \leq \operatorname{constant} \cdot ||T||_{L(B,B^*)}.$$

Where no confusion of interpretation is possible, we will use T for T_{IH} . In order to work with stochastic integrals on (H, B, i) we formulate the following hypothesis:

(h) There exists an increasing sequence $\{P_n\}$ of finite dimensional projections on B such that $P_n[B] \subset B^*$, $\{P_n\}$ converges strongly to the identity on B, and $\{P_{n|H}\}$ converges strongly to the identity on H.

For t > 0, let p_t denote the Wiener measure on the Borel field of B which is determined by Gauss cylinder set measure on H of variance parameter t. Let Ω be the space of continuous functions ω from $[0, \infty)$ into B and vanishing at zero, and let \mathcal{M} be the σ -field of Ω generated by the functions $\omega \to \omega(t)$. Then there is a unique probability measure \mathscr{P} on \mathscr{M} for which the condition $0 = t_0 < t_1 < \cdots < t_n$ implies that $\omega(t_{i+1}) - \omega(t_i)$, $0 \le j \le n-1$, are independent and $\omega(t_{j+1}) - \omega(t_j)$ has distribution

AMS(MOS) subject classifications (1970). Primary 28A40, 60H05, 35K15. Key words and phrases. Abstract Wiener space, stochastic integrals, parabolic equation, fundamental solution.

Research supported by NSF grant GP-19617.
 Research supported by NSF grants GP-19651 and GP-28934.

measure $p_{t_{j+1}-t_j}$ in B. The process W_t defined by $W_t(\omega) \equiv \omega(t)$ is called a Wiener process on B. The following theorem is a special case of Theorem 5.1 of [2].

THEOREM 1. Assume that C satisfies the following conditions:

- $(1-a) C: B \to L(B)$;
- (1-b) C(x) I has range in B^* for all x in B;
- (1-c) $||C(x) C(y)||_{H-S} \le \text{constant} \cdot ||x y||_B$ for all x and y in B; where $||\cdot||_{H-S}$ is the Hilbert-Schmidt norm in L(H);
- (1-d) $||C(x) I||_{H-S}^2 \le \text{constant} \cdot (1 + ||x||)^2$ for all x in B. Then the stochastic integral equation

$$X_t(\omega) = X_0(\omega) + \int_0^t C(X_s(\omega)) dW_s(\omega)$$

possesses a unique continuous solution which is nonanticipating with respect to the family $\{M_t\}$ where M_t is the σ -field generated by $\{W_s: 0 \le s \le t\}$. This solution is a homogeneous strong Markov process.

Assume that f is a function with domain in B and range in some Banach space W. The Fréchet derivative of f at x will be denoted by f'(x) and is a member of the space L(B, W). The H-derivative of f at x will be denoted by Df(x) and is the value at zero of the Fréchet derivative of the function $g: H \to W$ defined by $g(h) \equiv f(x + h)$.

We consider a differential operator of the form

$$L_{x,t} u(x,t) \equiv \operatorname{trace} \left[A(x) D^2 u(x,t) \right] - \partial / \partial t u(x,t)$$

where $A: B \to L(H)$, $u: B \times (0, \infty) \to R$ and D denotes H-differentiability, for t fixed. We say that $L_{x,t}u$ exists if the relevant derivatives exist and if $A(x)D^2u(x,t)$ is of trace class in L(H). We may now state the results of [3].

THEOREM 2. Assume that A(x) is of the form I - B(x), where

- (2-a) B(x) is a symmetric member of L(H) and there exists an $\varepsilon > 0$ such that $B(x) \le (1 \varepsilon)I$ for all x in B;
- (2-b) there exists a symmetric Hilbert-Schmidt operator E on H such that B(x) is of the form $EB_0(x)E$, where $B_0(x) \in L(H)$ and $\|B_0(x)\|_{L(H)} \leq 1$ for all x in B;
- (2-c) $B_0''(x)$ exists and is a bounded uniformly Lip-1 function from B to $L(B \to L(B \to L(H)))$;
 - $(2-d) |B'_0(x)|_{L(B\to L(H))}$ is uniformly bounded;
- (2-e) for any orthonormal basis $\{e_i\}$ of H, $\sum_i |B_0'(x)e_i|_{L(H)}^2 < constant$, independently of x in B.

Then there exists a family of finite real-valued signed Borel measures $\{q_t(x, dy): 0 < t < \infty, \dot{x} \in B\}$ on B such that if

$$q_t f(x) \equiv \int_B f(y) q_t(x, dy),$$

then for each bounded real-valued uniformly Lip-1 function f on B we have $L_{x,t}q_tf(x) = 0$ for all x in B and t > 0. Moreover $||q_tf - f||_{\infty} \to 0$ as $t \downarrow 0$.

Assume henceforth that hypothesis (h) holds and that A(x) satisfies (2-a)-(2-e). We require in addition that B(x) is the restriction to H of an operator which we also denote by B(x) and which satisfies

$$(2-f)B(\cdot): B \to L(B, B^*).$$

We may now regard $A(\cdot): B \to L(B)$. Then for each x in B $A(x)_{|H}$ is positive definite and symmetric by (2-a). Therefore $[A(x)_{|H}]^{1/2}$ exists as a member of L(H). Moreover $I + [A(x)_{|H}]^{1/2}$ is invertible in L(H). We define

$$A(x)^{1/2} \equiv I - \{I + [A(x)_{H}]^{1/2}\}^{-1}B(x).$$

It is easy to see that $A(x)^{1/2}$ satisfies (1-a), (1-c) and (1-d). (1-b) will follow once we establish that $[I + [A(x)_{|H}]^{1/2}](B^*) = B^*$. Writing $[A(x)_{|H}]^{1/2} = I - B(x) \{I + [A(x)_{|H}]^{1/2}\}^{-1}$ we see that $[A(x)_{|H}]^{1/2}$ maps B^* to B^* and $H \setminus B^*$ to $H \setminus B^*$. Since $I + [A(x)_{|H}]^{1/2}$ is invertible in L(H) it follows that $[I + [A(x)_{|H}]^{1/2}](B^*) = B^*$. Since $C(x) \equiv A(x)^{1/2}$ satisfies (1-a)-(1-d) the stochastic integral equation

(1)
$$X_{t}(\omega) = X_{0}(\omega) + \int_{0}^{t} [A(X_{s}(\omega))]^{1/2} dW_{s}(\omega)$$

has a unique solution X_t . We define

(2)
$$r_t(x, dy) \equiv \mathscr{P}\{X_t \in dy : X_0 = x\}.$$

THEOREM 3. The fundamental solution $\{q_t(x, dy)\}$ of Theorem 1 coincides with the family $\{r_{2t}(x, dy)\}$ of transition probabilities associated with the solution of (1) and defined by (2). That is, $q_t(x, dy) = r_{2t}(x, dy)$ for all t > 0 and x in B.

PROOF. Two families of finite Borel measures on B are identical if they act identically on all bounded real-valued uniformly Lip-1 functions f. That is, for any such f, we must show that

(3)
$$\int_{B} f(y)q_{t/2}(x, dy) = \int_{B} f(y)r_{t}(x, dy).$$

We will write the left side of (3) as $q_{t/2} f(x)$. Fix $\tau > 0$. Define $F: [0,\tau) \times B \to R$ by $F(t,x) = q_{(\tau-t)/2} f(x)$. Then by Theorem 1 the function

$$g(t, x) \equiv \partial/\partial t F(t, x) + \frac{1}{2} \operatorname{trace} A(x)D^2 F(t, x)$$

is identically zero on $[0,\tau)\times B$. It will be proved in a forthcoming paper

[5] that, for each bounded real-valued Lip-1 function f on B, the maps $(t, x) \to D(q_t f)(x)$ from $(0, \infty) \times B$ to H with $|\cdot|$ and $(t, x) \to D^2(q_t f)(x)$ from $(0, \infty) \times B$ to the space of trace class operators on H with trace class norm are continuous. This enables us to apply Ito's formula [2, Theorem 4.1] to F(t, x), obtaining

$$F(t, X_t(\omega)) = F(0, x) + \int_0^t g(s, X_s(\omega)) ds$$

$$+ \int_0^t \langle [A(X_s(\omega))]^{1/2} DF(s, X_s(\omega)), dW_s(\omega) \rangle$$

$$= q_{\tau/2} f(x) + \int_0^t \langle [A(X_s(\omega))]^{1/2} DF(s, X_s(\omega)), dW_s(\omega) \rangle$$

for $0 \le t < \tau$. \langle , \rangle denotes the B^*-B pairing. By [2, (4) of Theorem 3.2] the expectation (\mathscr{E}) of the second term on the right side of (4) is zero. Thus

$$\mathscr{E}[F(t,X_t(\omega))] = q_{\tau/2}f(x).$$

Letting $t \uparrow \tau$, we obtain

$$\int_{B} f(y)r_{\tau}(x, dy) = \mathscr{E}[f(X_{\tau}(\omega))] = q_{\tau/2}f(x).$$

This establishes (3) and proves the theorem.

REMARK. Since the measures $\{q_t(x, dy)\}$ form the transition probabilities of a Markov process, it is an immediate consequence that $q_sq_tf(x) = q_{s+t}f(x)$ (the "semigroup property") and that $q_t(x, dy)$ is a probability measure. These properties cannot be easily deduced from the work in [3]. They have been established in [4] in the presence of additional hypotheses of a technical nature on A(x) (and in the absence of (2-f) and hypothesis (h)).

We note that, for the proof of Theorem 3, we have used only the properties of $q_t f$ mentioned in the statement of Theorem 2 together with smoothness properties of $Dq_t f$ and $D^2q_t f$. We have thus proved the following uniqueness result for the fundamental solution of $L_{x,t}u=0$.

THEOREM 4. Assume that $L_{x,t}$ satisfies (2-a)–(2-f) and that B satisfies hypothesis (h). Then the family $\{q_t(x,dy): t>0, x\in B\}$ whose existence is asserted by Theorem 2 is unique among families $\{\mu_t(x,dy): t>0, x\in B\}$ of bounded real-valued signed Borel measures on B which satisfy the following requirements:

For each bounded real-valued uniformly Lip-1 function f on B, setting $\mu_t f(x) \equiv \int_B f(y) \mu_t(x, dy)$,

(4-a)
$$\mu_t f(x)$$
 satisfies $L_{x,t} \mu_t f(x) = 0$,

 $(4-b) \|\mu_t f - f\|_{\infty} \to 0 \text{ as } t \downarrow 0,$

(4-c) $(t, x) \rightarrow D(\mu_t f)(x)$ and $(t, x) \rightarrow D^2(\mu_t f)(x)$ are continuous from $B \times (0, \infty)$ to H and to the space of trace class operators on H respectively.

REFERENCES

- 1. L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part 1, Univ. of California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35 #3027.

 2. H. H. Kuo, Stochastic integrals in abstract Wiener space, Pacific J. Math. 41 (1972), (1972), (1972).
- 469-483.
- 3. M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J. Functional Analysis 3 (1969), 85–114. MR 40 #4815.
- 4. ——, A fundamental solution of the parabolic equation on Hilbert space. II: The semigroup property, Trans. Amer. Math. Soc. 150 (1970), 257–286. MR 43 #3847.
- 5. ____, Diffusion semigroups on abstract Wiener space, Trans. Amer. Math. Soc. 166 (1972), 411-430.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, **New York 10012**

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST, **New York 14226**

Current address (Hui-Hsiung Kuo): Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903