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STOCHASTIC INTEGRALS AND PARABOLIC EQUATIONS
IN ABSTRACT WIENER SPACE
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Kuo [2] has developed a theory of stochastic integrals and Piech [3] has
established the existence of fundamental solutions of a class of parabolic
equations, both working within the context of abstract Wiener space. In
this note we establish the relationship between the work of Kuo and Piech,
and as a consequence of this relationship we obtain a uniqueness theorem
for fundamental solutions. We also provide a new proof of the non-
negativity and semigroup properties of fundamental solutions.

Let H be a real separable Hilbert space, with inner product ( , ) and
norm ||; let ||-| be a fixed measurable norm on H; let B be the completion
of H with respect to ||-||; and let i denote the natural injection of H into B.
The triple (H, B, i) is an abstract Wiener space in the sense of Gross [1].
We may regard B* ¢ H¥~ H < B in the natural fashion. A bounded
linear operator from B to B*¥ may thus be viewed as an operator on B or,
by restriction to H, as an operator on H. The restriction to H of a member
T of L(B, B*) is of trace class in L(H) (= L(H, H)) and

IT gl = constant - | T, px-

Where no confusion of interpretation is possible, we will use T for Tjy.
In order to work with stochastic integrals on (H, B, i) we formulate the
following hypothesis:

(h) There exists an increasing sequence {P,} of finite dimensional pro-
jections on B such that P,[B] = B*, {P,} converges strongly to the identity
on B, and {P,,} converges strongly to the identity on H.

Fort > 0, let p, denote the Wiener measure on the Borel field of B which
is determined by Gauss cylinder set measure on H of variance parameter ¢.
Let Q be the space of continuous functions @ from [0, c0) into B and
vanishing at zero, and let .# be the o-field of Q generated by the functions
@ — o(t). Then there is a unique probability measure £ on .# for which
the condition 0 =1t,<t; <---<t, implies that w(t;;,) — wl(t)),
0=<j=n-—1, are independent and w(t;,,) — w(t;) has distribution
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measure p, ., in B. The process W, defined by W (w) = w(r) is called a

Wiener process on B. The following theorem is a special case of Theorem
5.1 of [2].

THEOREM 1. Assume that C satisfies the following conditions:

(1-a) C: B - L(B);

(1-b) C(x) — I has range in B* for all x in B;

(1-c) |C(x) — C(y)lg—-s < constant - |x — y|z for all xand y in B; where
-l ~ s is the Hilbert-Schmidt norm in L(H);

(1-d) IC(x) — I3 _s < constant - (1 + ||x]))? for all x in B. Then the
stochastic integral equation

X,(@) = Xow) + f C(X () dW,()

possesses a unique continuous solution which is nonanticipating with respect
to the family {#,} where M, is the o-field generated by {W,:0 < s < t}.
This solution is a homogeneous strong Markov process.

Assume that fis a function with domain in B and range in some Banach
space W. The Fréchet derivative of fat x will be denoted by f”(x) and is a
member of the space L(B, W). The H-derivative of fat x will be denoted by
Df (x) and is the value at zero of the Fréchet derivative of the function
g: H » W defined by g(h) = f(x + h).

We consider a differential operator of the form

L, ,u(x,t) = trace [A(x)D*u(x, )] — 0/t u(x, t)

where A: B — L(H),u: B x (0, ) — R and D denotes H-differentiability,
for t fixed. We say that L, ,u exists if the relevant derivatives exist and if
A(x)D?u(x, t) is of trace class in L(H). We may now state the results of [3].

THEOREM 2. Assume that A(x) is of the form I — B(x), where

(2-a) B(x) is a symmetric member of L(H) and there exists an ¢ > 0 such
that B(x) < (1 — ¢)I for all x in B;

(2-b) there exists a symmetric Hilbert-Schmidt operator E on H such
that B(x) is of the form EBy(x)E, where By(x)€ L(H) and |Bo(X)l @) = 1
for all x in B;

(2-¢) By(x) exists and is a bounded uniformly Lip-1 function from B to
L(B — L(B — L(H)));

(2-d) |B(%)| L8 Laay) IS uniformly bounded

(2-€) for any orthonormal basis {e;} of H, ), |B’0(x)ei|f(m < constant,
independently of x in B.

Then there exists a family of finite real-valued signed Borel measures
{q,(x,dy):0 < t < o0, x € B} on B such that if
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then for each bounded real-valued uniformly Lip-1 function f on B we have
L,.q,f(x) =0 for all x in B and t > 0. Moreover |lq,f — fll, = 0ast]0.

Assume henceforth that hypothesis (h) holds and that A(x) satisfies
(2-a)—(2-e). We require in addition that B(x) is the restriction to H of an
operator which we also denote by B(x) and which satisfies

(2-f)B(-): B —» L(B, B¥).

We may now regard A(-): B — L(B). Then for each x in B A(x)y is
positive definite and symmetric by (2-a). Therefore [A(x)z]"/? exists as
a member of L(H). Moreover I + [A(x)z]"/? is invertible in L(H). We
define

AX)'V? =1 — {I + [AX)x]"*} " 'B(x).

It is easy to see that A(x)'/? satisfies (1-a), (1-c) and (1-d). (1-b) will follow
once we establish that [I + [A(x)5]"/*)(B*) = B*. Writing [A(x),5]"* =
I — B(x){I + [A(x);5]"/*} ! we see that [4(x)z]"/> maps B* to B* and
H\B* to H\B*. Since I + [A(x);z]"/* is invertible in L(H) it follows that
[ + [A(x)5]"] (B¥) = B*. Since C(x) = A(x)!/? satisfies (1-a)-(1-d) the
stochastic integral equation

t

(1) Xi(w) = Xo(w) + f [AX(@)]'? dW ()
0

has a unique solution X,. We define

) r(x,dy) = 2{X,edy: Xy = x}.

THEOREM 3. The fundamental solution {q,(x, dy)} of Theorem 1 coincides
with the family {r,,(x,dy)} of transition probabilities associated with the

solution of (1) and defined by (2). That is, q,(x, dy) = ry,(x,dy) for all t > 0
and x in B.

Proor. Two families of finite Borel measures on B are identical if they
act identically on all bounded real-valued uniformly Lip-1 functions f.
That is, for any such f, we must show that

o) [ oM = [ romx.an.
We will write the left side of (3) as g,, f (x). Fixt > 0. Define F: [0,7) x
B — R by F(t, x) = q—y,2f (x). Then by Theorem 1 the function

g(t, x) = 0/0t F(t, x) + % trace A(x)D*F(t, x)

is identically zero on [0,7) x B. It will be proved in a forthcoming paper
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[5] that, for each bounded real-valued Lip-1 function f on B, the maps
(t,x) = D(q,f)(x) from (0, 00) x B to H with |-| and (t, x) = D?(q,f)(x)
from (0, o0) x B to the space of trace class operators on H with trace class
norm are continuous. This enables us to apply Ito’s formula [2, Theorem
4.1] to F(t, x), obtaining

FﬁXMm=HQM+fﬂ&WMMS
0
@ +L<Mwmmwwnxnwnwmm>

= qy2f (%) + fo [AX()]2DF (s, X (), dW,(@))

for 0 <t <1.{, )denotes the B*-B pairing. By [2, (4) of Theorem 3.2]
the expectation (&) of the second term on the right side of (4) is zero. Thus

E[F(t, X ()] = opa f ().
Letting ¢ T 7, we obtain

LﬂWMJﬁ=ﬂﬂ&@m=%Jw.

This establishes (3) and proves the theorem.

REMARK. Since the measures {g,(x, dy)} form the transition probabilities
of a Markov process, it is an immediate consequence that ¢.q,f (x) =
qs+.f(x) (the “semigroup property’’) and that g,(x,dy) is a probability
measure. These properties cannot be easily deduced from the work in [3].
They have been established in [4] in the presence of additional hypotheses
of a technical nature on A(x) (and in the absence of (2-f) and hypothesis (h)).

We note that, for the proof of Theorem 3, we have used only the pro-
perties of g,f mentioned in the statement of Theorem 2 together with
smoothness properties of Dgq,f and D?q,f. We have thus proved the
following uniqueness result for the fundamental solution of L, u = 0.

THEOREM 4. Assume that L., satisfies (2-a)—(2-f) and that B satisfies
hypothesis (h). Then the family {q,(x,dy):t > 0, x € B} whose existence is
asserted by Theorem 2 is unique among families {p,(x,dy):t > 0,x € B} of
bounded real-valued signed Borel measures on B which satisfy the following
requirements:

For each bounded real-valued uniformly Lip-1 function f on B, setting
S (%) = [pf M, dy),

(4-a) u, f (x) satisfies Ly, f(x) = 0,
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(4'b) "”tf—f"oo - 0as tl Oa
(4-c) (t,x) > D(u.f)(x) and (t,x) — D*(u.f)(x) are continuous from
B x (0, o0) to H and to the space of trace class operators on H respectively.

REFERENCES

1. L. Gross, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and
Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part 1,
Univ. of California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35 #3027.

2. H. H. Kuo, Stochastic integrals in abstract Wiener space, Pacific J. Math. 41 (1972),
469-483.

3. M. A. Piech, A fundamental solution of the parabolic equation on Hilbert space, J.
Functional Analysis 3 (1969), 85-114. MR 40 #4815.

4. , A fundamental solution of the parabolic equation on Hilbert space. 11: The
semigroup property, Trans. Amer. Math. Soc. 150 (1970), 257-286. MR 43 # 3847,

S. , Diffusion semigroups on abstract Wiener space, Trans. Amer. Math. Soc. 166
(1972), 411-430.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK,
New YoOrk 10012

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST,
NEw YOrk 14226

Current address (Hui-Hsiung Kuo): Department of Mathematics, University of Virginia,
Charlottesville, Virginia 22903



