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Consider the problem of backward uniqueness for the uniformly para­
bolic equation 

n 

(a) ut = YJ (aij(x> t)ux)x- = V • s/\u in Q x [0, oo), 
ij=l J * 

(1) 
(b) séSIu • v = 0 on dQ x [0, oo), 

and the problem of unique continuation (and uniqueness for the Cauchy 
problem) for the uniformly elliptic equation 

n 

(2) X (aiJ{x)uXj)Xl = V-sWu = 0 in Q, 

where Q is a bounded domain in Rn, v denotes the unit normal to 5Q, and 
the symmetric matrix sé has its eigenvalues in [a, a - 1 ] , with a > 0. We 
construct examples of nonuniqueness for (1) when n — 2, and for (2) when 
n = 3; in each case a may be arbitrarily close to 1 and the coefficients are 
also Holder continuous. 

Backward uniqueness for (1) with %>l coefficients was shown by Lions-
Malgrange [5]; probably the simplest proof is that of Agmon-Nirenberg 
[2] and Agmon [1] using the general method of logarithmic convexity. 
Carleman [4] long ago established unique continuation for (2) with (€1 

coefficients when n = 2. For n ^ 3, unique continuation for (2) with <ig2,1 

coefficients was proved by Aronszajn [3], and more simply with %>l co­
efficients by Agmon [2]. See [1] and [6] for references to other results by 
Holmgren, Cordes, Hörmander, Landis, Lees and Protter, Bers and 
Nirenberg, and others. 

An example of nonunique continuation was constructed by Plis [6] for a 
uniformly elliptic equation in the nondivergence form 
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3 3 

(3) X aiAx)uxiXj + E bt(x)uxt + c(x)u = 0, 

with Holder continuous coefficients. Despite this example, the question 
of unique continuation for (2) has remained actively open. In the first 
place, it is well known that (2) and (3) often exhibit strikingly different 
behaviors when the coefficients become nonsmooth. In the second place, 
there is the strong physical interpretation of (1) and (2). These are the 
equations of time dependent (steady state) heat flow with variable non-
isotropic conductivity matrix s4, with constant heat capacity, and with 
the conductivity in each direction bounded above and below. Condition 
(l)(b) implies that dQ is totally insulated. The present results will be pub­
lished in full elsewhere. 

THEOREM 1. There exists an example of backward nonuniqueness on the 
halfspace A = R2 x [0, oo) for a uniformly parabolic equation 

(4) ut = ((l+A + a)ux)x + (buy)x + (bux)y + ((1 + C + c)uy)y in A. 

(i) The solution u(x, y, t) is ^°° on A, = 0 for t ^ a certain positive T, 
but never = 0 in any open subset of R2 x [0, T). 

(ii) The coefficients a(x, y, t\ b(x, y91\ c{x, y, t) are ^°° on A and = 0 for 
t ^ T. 

(iii) The coefficients A(t\ B(f) are Holder continuous (here of order 1/6) 
on [0, oo), ^°° on [0, T), and = 0fort^T. 

(iv) All functions u,a,b,c are periodic (2n) in x and y; u is symmetric 
about x = jn and y = jn, j integer. 

(v) Moreover, u satisfies the "no flow" condition (l)(b) on 5Qx [0, oo), 
Q = (0, n) x (0,7r), since both b and the normal derivative du/dv are — 0 
there. 

THEOREM 2. There exists an example of nonunique continuation on the 
halfspace A = R2 x [0, oo) for a uniformly elliptic equation 

(5) utt + ((1 + A + a)ux)x + (buy)x + (bux)y + ((1 + C + c)uy)y = 0 in A. 

Conditions (i)-(v) on u, a, b, c, A, C hold exactly as stated in Theorem 1. 

Outline of the parabolic example. Our construction proceeds with an 
oo of steps of successively shorter duration Tl5 T 2 , . . . whose sum T is 
finite. Let us consider the nth step, in which the solution begins propor­
tional to cos Xnx - exp ( — X2t\ ends proportional to cos Xn+xy • exp ( — À2

+ xt\ 
and at intermediate times is always a linear combination of cos Xnx and 
cosAw+1y. Here A1? A2 , . . . is an increasing sequence of integers, to be 
chosen later. Each step will consist of three major phases (sandwiched 



352 KEITH MILLER [March 

between four "transition" phases needed for purposes of smoothness only). 
These seven phases have durations X~2, X~2, X~2, snX~2, X~2, X~2, X~2 

respectively, where sn is a certain sequence tending to oo, also to be chosen 
later. We define \xn = Xn+1/Xn and a2 = exp( —(ju2 — l)s„) and point out 
that \xn will be « 1 and sn « 0, especially for large n. 

Let rj be a fixed ^°° function on [0,1] such that rj(t) is = 0 near t = 0, 
monotone on [0,1], and = 1 near t = 1. We now proceed to list the 
duration, solution, and coefficients 1 + A + a, b, 1 + C + c of the three 
major phases. For convenience we start the time out anew with t = 0 at 
the beginning of each phase and also employ the notation " ~ " , "is 
proportional to". 

The "transition 1" phase merely changes the coefficients smoothly from 
an initial 1,0,1 to a final 1,0, \i~ 2. 

The "seed" phase has duration X~2, solution 

u ~ cos Xnx - exp ( — X2t) + r\{Xlt) s„ cos Xn+1y- exp ( — X2t), 

and coefficients 1 + a, b, \i~ 2, where a(x,y, t) and b(x, y, t) will be described 
later. This phase serves to introduce a tiny cos Xn + 1y component into the 
solution. 

The "transition 2" phase merely changes the decay rate of the first 
component smoothly from an exp ( — X2t) rate to an exp ( — X2

+1t) rate. 
The "distorted decay" phase has duration X~2sn, solution 

u — cos/lnx -exp( — X2
+1t) + encos Xn + ly-Gxp( — X2t\ 

and coefficients fi2,0,fi~2. This phase reverses the initial 1 to en ratio of 
the two components to a final en to 1 ratio. 

The "transition 3" phase merely changes the decay rate of both com­
ponents smoothly to the same exp ( — X2

+ ^t) rate. 
The "removal" phase has duration X~2, solution 

u - rj(X2{\ - t)) a„ cos Xnx • exp (-X2
+ xt) + cos Xn + 1y • exp (-X2

+ xt\ 

and coefficients ju2, b, 1 + c, where the b(x, y91) and c(x, y, t) will be des­
cribed later. This phase removes a tiny component from the solution. 

The "transition 4" phase merely changes the coefficients smoothly from 
/i2,0,1 to 1,0,1. 

Derivation of the a, b. It is convenient to normalize the geometry, 
expanding the x, y, and t scales by factors of Xn, Xn + U and X2 respectively. 
That is, we consider ü defined by 

(6) w(x, y, t) = u(x/Xn, y/Xn + 1, t/X
2) ~ cos x • e~l + rj(t)en cos y • e~\ 
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which must be the solution of an equation with coefficients 1 + a, 5,1. 
Since cos x • e~x and cos y • e~l are already solutions of the equation with 
coefficients 1,0,1, we are led to the following perturbation equation: 

(7) (a sin x)x = — rjsn sin ybx — sin xby — r\'e.n cos y. 

By considering b of the form f(y) • s(x, y) where s is a certain solution 
of the first order PDE 

(8) r\zn sin y ds/dx + sin x ds/dy = 0, 

one can construct a £ as desired such that the right-hand side of (7) has 
mean value zero across horizontal lines between x = jn and x = (j + \)n. 
This b inserted in (7) then determines an a as desired. Moreover, each 
derivative of a and b is bounded by a constant times en. 

Construction of b and c for the "removal" phase is completely analo­
gous. 

Putting the pieces together. One now stacks the solutions and coefficients 
for the various phases and steps "end to end," after first multiplying the 
formulae (u ~ cos knx • exp ( — Ajjt), etc.) in each phase by an appropriate 
magnitude constant in order to maintain continuity. With the proper 
choice of Xn and s„, we can then make T = £ Tn = ]T (6 + sn)À~2 finite, 
u and the a, b, c -* 0 (in ^°° fashion) and the A(t), C(t) -• 0 (in Holder 
continuous fashion) as t -> T. It suffices for example to choose Xn = 
(n + AT)3, sn = (n + AT)4, where the integer N is taken sufficiently large to 
keep £„, a, b, c, 4 , C small also during the initial steps. One then sets 
u = a = b = c = A = C = 0 for t ^ T. 

The elliptic example. The elliptic construction is extremely similar to the 
parabolic case. The solution in the nth step begins proportional to 
cosknx • exp( — Ànt) and ends proportional to cos/L„+1y -exp( — AM+1£). 
The perturbation equation for a and b in the "seed" phase turns out to be 
in essentially the same form as (7) and the "transition 2" and "transition 
3" phases require a bit more attention. We may choose Xn = (n + N)6 

and sn - (n + iV)4. 
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