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Introduction. The purpose of this paper is to provide a fresh outlook to 
various questions on rings with polynomial identity by examining the 
centers of such rings. This approach yields the interesting result that any 
nonzero ideal of a semiprime ring with polynomial identity intersects the 
center nontrivially (Theorem 2). 

There are at least two interesting consequences to Theorem 2: a 
generalization of Wedderburn's theorem (any semiprimitive ring with 
polynomial identity, whose center is a field, is simple) and a strengthening 
of Posner's theorem [1] (any prime ring with a polynomial identity has a 
simple ring of quotients whose center is the quotient field of the center 
of the prime ring). 

The proofs are elementary modulo Jacobson [3]. Of course rings are not 
necessarily commutative and for the sake of simplicity we assume a unit 1. 

The key argument in this paper is an application of Formanek's central 
polynomials for matrix algebras over a field, whose important properties 
are [2] : Let Mn be an n x n matrix algebra over an arbitrary field. Then 
there exists a polynomial gn(Xl9.. .,Xm) which has coefficients in Z; 
is homogeneous (degree > 0) in every variable and linear in all but the 
first variable; takes values in the center for every specialization in Mn; 
and is nonvanishing for some specialization. 

LEMMA 1. gn(X1,..., Xm) is central, nonvanishing for any central simple 
algebra S of degree n over its center C. 

PROOF. Let us first consider C finite. Since by Wedderburn's structure 
theorem S is a matrix algebra over a division ring D which is finite 
dimensional over C, which is finite, we have D is finite and thus a field 
(Wedderburn's theorem on finite division rings [3, p. 183]). Thus D = C 
and S is in fact a matrix algebra over C, a field, and g„ is by hypothesis a 
central, nonvanishing polynomial for S, so that there is nothing to prove. 

So we may assume C is infinite. Again let S be a matrix algebra over D, 
a division ring finite dimensional over C. Let F be a splitting subfield 
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of D [3, p. 120]. Then S ®CF = Mn(F), for which gn is central and non-
vanishing, so gnXm+1 — Xm+1gn is a polynomial identity for S (since C is 
a field, S ^ S (x)cF by s -• s® 1, so g„Xm+1 — Xm+1gn9 which vanishes 
on Mn(F\ vanishes on the subalgebra 5). Thus, gn takes values in the center 
of S. Is gn non vanishing? If gn were a polynomial identity for 5, it would 
be a polynomial identity for Mn(F) = S (g)c F since C is infinite [3, p. 231], 
so gn would vanish for all specializations in Mn(F\ false. So g„ does not 
vanish for some specializations in 5, and we are done. 

THEOREM 1. Let R be semiprimitive ( = semisimple in the sense of Jacobson 
[3]) with center C and polynomial identity/. Let A be any ideal ^0 of R. 
Then A n C ^ 0. 

PROOF. AS a semiprimitive ring, R is a subdirect product of primitive 
rings S;, each of which is a homomorphic image of R. Thus, St satisfies 
the same polynomial identity ƒ and is therefore simple of dimension 
!g [d/2]2 over its center, which we shall call Ct (by Kaplansky's Theorem, 
[3, p. 226]). 

Since f]( ker pt = 0 where p£ is the canonical projection pt:R -> Si9 we 
must have the restriction of pt to A is nonzero for some i. Let ƒ = {/ : p£ res­
tricted to A is nonzero}, i.e. for i fi I the ith component of any element of 
A is 0. Since pt : R -> St is surjective, p^(^) is a nonzero ideal of St for i e I. 
But S; is simple. Therefore, Vi e J, pt- restricted to A is surjective. 

Now let us choose i0 e I such that Sio has maximal dimension n% over 
its center Mi e I (the dimension is bounded by [d/2]2 by Kaplansky's 
theorem [3, p. 226]). Then let gno be the nonvanishing central polynomial 
of Formanek, described in Lemma 1. Since g„0 is central for M„0, grt0 is 
central (Procesi has shown indeed vanishing) for smaller-degree matrix 
algebras, hence for all smaller-degree central simple algebras, by the argu­
ment of Lemma 1. So gno is central for Sf, Vi e /. 

Let su...,sme Sio such that gno(sl9 . . . , sm) ^ 0. Let au . . . , am e A such 
that pio(aj) = Sj, 1 Sj^m. Since gno is homogeneous of degree >0, its 
constant term is 0, and 

V* $ U Pi(gno(
al> • • • > am)) = gn0(Pi(all • • • » Pi(O) = &.0(°> • • • , 0) = 0. 

Vi e /, Pi(gno(au . . . , a j ) = gjpfai),..., pf(aw)) e Q 

and in particular 

Ptoteno(al> • • • » O ) = g»o(Plo(ûl), • • • , Pjflm)) 

= g«o( s i--- sm)^0 buteC io. 
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So gno(au...,am)eC and is nonzero. But gno(au.. .,am)e A, so 
A n C # 0. Q.E.D. 

COROLLARY. Let i? be semiprimitive with center C, afield, and with poly­
nomial identity/. Then R is simple. 

PROOF. If A is a nonzero ideal of JR, A n C # 0 by Theorem 1. But C is 
a field, so A = R. Q.E.D. 

It is clear that the conditions of the corollary are necessary ; appropriate 
examples of their necessity are the nonsimple rings Z, the ring of integers 
(center is not a field), and the ring of linear transformations over an 
infinite-dimensional vector space over a division ring (primitive, center is 
a field, but has no polynomial identity). 

We now generalize Theorem 1 : 

THEOREM 2. Let R be semiprime with center C and polynomial identity f. 
Let A be any ideal ^OofR. Then A n C / 0. 

PROOF. Since a semiprime ring with polynomial identity has no nil 
ideals (an immediate consequence of [3, p. 232, Theorem 1]), R[À] is semi-
primitive [3, p. 12], where R[X] is the ring of polynomials in the commuting 
indeterminate 2, with coefficients in R (these reductions have been made 
standard by Amitsur). 

We note that the center of R[X] is actually C[A], since if c(X) = JV^A', 
rt e R, then Vr e R, c(X)r = rc(X) => YM? ~~ r r ^ = 0=>rteC, so c(X) e 
C[X\. 

Now A is an ideal of R, so A[X] is an ideal oïR[X], R[X] is semiprimitive, 
so by Theorem 1 A[X] n C[X] # 0. Comparing coefficients we get A n C 
# 0 . Q.E.D. 

COROLLARY 1. (Strengthening ofPosnefs theorem). Let Rbe a prime ring 
with center C and polynomial identity. Then there exists a simple ring 
S = RC, where C is the quotient field of C, which is a ring of quotients 
ofR and is finite dimensional over C (this is a statement ofPosneis theorem 
[1]). Moreover, the center of S is C (not part of the previous formulations of 
Posner's theorem). 

PROOF. Since R is a prime, its center C has no zero-divisors. So we define 
S formally as {rc~x,reR,c ^ OeQr^î1 = r2c^1 if and only if rxc2 

— r2ci}- Then multiplication and addition are set in the obvious ways : 

(riCÏ1)(r2C21) = {rir2)(cic2)~
1 

and 
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riCx x + r2c2
 l = {r1c1 + r2cl)(clc2) K 

All the necessary properties of multiplication and addition in S are natural 
and immediate. Obviously S = RC, and we claim C = cent S: 

It is obvious that C £ cent S. To go the other way, let re'1 e cent S. 
Then (rc~ *)c G cent S, so r e R n cent S ç C . S o r c _ 1 6 C and cent S = £, 
a field. 

Clearly S is a prime: Suppose SjS^ == 0> si> s2 G S. Then sx(rc~ l)s — 0, 
VreK,c^OeC. Let 51=r1ci"1, s2 = r2c2 S ^ei^, f =1,2, qeC , 
Ï = 1,2. Then 0 = r1cî1rc~1r2c2

1 = ir^rr^ic^c^"1, VrejR, c e C So 
r1rr2 = 0, Vr G R. But K is prime, so either rx or r2 is 0, so either st or s2 is 0. 

So S is prime and S — RC satisfies a polynomial identity. Therefore by 
Theorem 2, if A is a nonzero ideal of 5, A n C ^ 0. But C is a field, so 
i4 = S and S is simple. S is finite dimensional over C by Kaplansky's 
theorem. Q.E.D. 

I am deeply indebted to Professor Jacobson for his patient guidance. 
ADDENDUM. Subsequent to the submission of this note for publication, 

several facts have come to my attention. The most significant fact is that 
the statement of Corollary 1 of Theorem 2 (the strengthening of Posner's 
theorem) has been discovered also by Procesi, Formanek, Martindale, and 
Small, so this result cannot be considered new. What is new is the straight­
forward and direct proof, relying only on the existence of central poly­
nomials for matrix rings. Using the stronger version of Posner's theorem, 
Small (and perhaps others) proved the special case of Theorem 2 for JR 
prime. 

Martindale has observed to me that the results of this paper remain true 
even if one does not assume R contains unity ; this assumption is not 
essential to any of the proofs. At any rate, one could always adjoin unity 
to a semiprime ring with polynomial identity to obtain a semiprime ring 
with polynomial identity and with unity, thereby extending Theorem 2 to 
the analogous result for rings without unity. It follows clearly that any 
semiprime ring with polynomial identity has a nontrivial center. That 
semisimple rings with polynomial identity have nontrivial centers, was 
first shown by Procesi (remark 5 of [2]). Using standard methods of em­
bedding semiprime rings with polynomial identity into semisimple rings 
with polynomial identity (as indicated in the proof of Theorem 2), can one 
extend Procesi's result to semiprime rings with polynomial identity, as 
was observed by Small. This result is much weaker than Theorem 2, 
however, because Theorem 2 fails for rings which satisfy precisely the 
same polynomial identities as n x n matrix rings; it is easy to see that 
these rings have nontrivial centers. 
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