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In this paper we describe the first stages of a theory of 3-manifolds with 
finite fundamental group. The strong conjecture that any free finite group 
action on S3 is conjugate to a linear action is known for some cyclic groups, 
see [3], [4], and is supported by recent work of one of us on fundamental 
groups [2]. Here we concern ourselves with the weaker conjecture that 
any compact 3-manifold with finite fundamental group is homotopy 
equivalent to a Clifford-Klein form. (Note that both conjectures are 
phrased to avoid problems with homotopy 3-spheres.) It is known, see 
for example [6], that the homotopy type of such a manifold is determined 
by the fundamental group and the first /c-invariant. By exploiting the link 
between /c-invariant and finiteness obstruction we are able to decide which 
homotopy types correspond to finite Poincaré complexes, and thus res­
trict the possible homotopy types for manifolds. There are nonstandard 
types for some groups, and a corollary of our argument is the existence 
in dimensions An — 1, n ^ 2, of free actions homotopically distinct from 
orthogonal ones. When n = 1, we can only produce such an action on a 
homology sphere, and it would be most interesting to know the fundamen­
tal group. 

1. Homotopy type of space forms. Let the abstract group n be isomorphic 
to the fundamental group of a compact 3-dimensional manifold of con­
stant positive curvature (Clifford-Klein form), and suppose n cannot be 
decomposed as a direct product. The possibilities for % are listed in the 
following table, see [10, Chapter 7, p. 224] : 

If Yis a 3-dimensional CW-complex such that Y is homotopy equivalent 
to S3, and we can choose an isomorphism \\i\nx(Y, y) -> 71, we shall call 
Y a Poincaré space form. Yis not necessarily finite, and the isomorphism 
i/>, although not natural, is assumed fixed. Homotopy classes of space 
forms are in (1-1) correspondence with the orbits in H\n,Z) under the 
action of ± Aut n [6, Theorem 1.8] and there is a well-defined obstruction 
to finding a finite complex in a given homotopy type, lying in the pro­
jective class group K0(Zn) [8, Theorem F]. We can describe this obstruc­

tive {MOS) subject classifications (1970). Primary 57A10, 57E25; Secondary 55G45, 
16A54, 55A25. 
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71 

zm 

e4„ 

7^* 
1 V 

0* 

ƒ* 

Generators 

A 

A,B 

A,P,Q 

A,P,Q,R 

A,B,C 

Relations 

Am = 1 

A2n = l,^" = B2,B~1AB = A'1 

A3V = 1,P4 = 1,P2 = g 2 , 

PQP-I = Q-l .ylPyl- 1 = QtAQA'1 

As for Tf, also P 2 = P2 , 

PPP" 1 = QP.RQR-1 = Q~\RAR-

A6 = I A3 = B2 = C5 = ABC 

= ê 

i = ^ - 1 

Order 

m 

An 

8.3y, 

i; ^ 1 

48 

120 

TABLE 1 

tion explicitly in the following way. Since % is isomorphic to the fundamen­
tal group of some space form, the chains of the universal cover define 
an exact sequence of finitely generated rc-modules 

0 -+ Z - F3 -> F2 -+ Fx -+ F 0 -+ Z -» 0, 

whose chain homotopy type corresponds to a generator fe0 of HA(n9 Z). If 
r is any integer prime to [n : 1], and I = £ge7C g, let [r, S] be the projective 
ideal of Zrc generated by r and I . There is an isomorphism, see [5, Lemma 
6.1], 

Z + Z [ 7 t ] ^ Z + [r,E], 
given by 

(1,0) ^(F,mZ) & (0,l)h>(l,r) , rr = 1 + m[7i : 1]. 

It is easy to construct a map of degree r (mod[n : 1]) between the chain 
complex above and the modified complex 

0 -• Z -+ F 3 + Zn -> F2 + [r,E] -> Fx -> P 0 -> Z -+ 0, 

a geometric realisation of which corresponds to the generator rk0 of 
H\n, Z). Since [F, E] + [r, I ] is free, this shows that [r, I ] is the finiteness 
obstruction for this homotopy type. 

Divide the homotopy classes of Poincaré space forms Y(equivalently 
orbits in H\n, Z)) into three types: 

I, Y is infinite, hence not equivalent to a manifold, 
F, Y is finite, and 

CK, y is equivalent to one of the classical Clifford-Klein forms. 
The argument above shows that we may distinguish between types I 

and F by means of the modules [r, Z] ; the orbit of rk0 belongs to F if and 
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only if [r, Z] ~ 0 in K0(Zn). 

THEOREM 1. If the 2-Sylow subgroups ofn are cyclic, [r, Z] ~ Ofor all r. 
If the 2-Sylow subgroups of n are generalised quaternion, [r, Z] ~ 0 pro­
vided r = ± 1(8). 

PROOF. We outline the argument for cyclic and quaternion groups, 
since these are typical. Observe that the module [r, Z] ~ 0 if there is an 
element in the orbit of rk0 coming from a form defined by a fixed point 
free representation of n. For convenience we identify H4(n,Z) with 
Z[n:l] by mapping the generator k0 to 1. The symbol cp denotes Euler's 
function, and U the group of units. 
Zm : [r, Z] ~ 0, since the homotopy type contains the lens space L(m, r). 
QAn\ (i) n = 2. If if = Z[*J, fc] s (7(S3), one looks at the exact sequence 

- Kt(H) + l/(Z(2Z2)) - U(F2(2Z2)) - X0(A) -*, 

and sees that [3, Z] comes from a unit in F2(2Z2), which is not hit by any 
element in K^H). This computation was originally performed by one of 
us and C. T. C. Wall. 

(ii) n = It, and QAn 3 Q8. If r = ±3(8) the orbit of r lifts to the orbit 
of 3 in Z8, which shows that the covering complex with fundamental 
group Q8 cannot be finite. The remaining modules are the trivial finiteness 
obstructions associated with the CK-forms. Each of these is defined by a 
fixed point free representation corresponding to minus a square in U(Z8t). 

(iii) n = 2t + 1. As in (i) we decompose A to show [r, Z] ~ 0 always; 
hence for these groups, there are "bad" finite complexes. 

We present the geometric implications of our theorem in Table 2 below. 
Note that the figures refer to numbers of generators rather than to number 
of orbits under the ± Aut % action. 

2. Homotopically exotic actions. The argument of the previous para­
graph implies the existence of finite Poincaré complexes homotopically 
distinct from manifolds of constant positive curvature in all dimensions 
= 3(4). Furthermore the Spivak normal fibration admits a PL-bundle 
structure in all cases, see [7], and the problem of finding a PL-manifold 
in the homotopy type reduces to one of surgery. The following theorem 
solves this problem for certain metacyclic groups and shows the existence 
of homotopically exotic, free, piecewise linear actions on spheres. 

THEOREM 2. Let n be an odd prime and Q4n the generalised quaternion 
group of order An. Then, for every integer I > 0, there exists a PL, closed, 
oriented (41 + lymanifold M with the following properties: 

(i) n^M = Q4n, 
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n = 2\2t + 1) 

k> 1 
n ~ 

n = 1(2) 

r?,0*,7* 

T*, i? £ 2 

2fc 

<p[rc : 1] 

(p(m) 

~lcp{2t + 1) 

2ç>(w) 

8,16,32 

8.3"-x 

I 

— 

2k-V(2f + 1) 

— 

4,8,16 

4.3"-* 

CK 

(p(m) 

2k~2(p(2t + 1) 

(p(n) 

2,4,4 

2.3"-1 

F but not CK 

— 

— 

<P(n) 

TABLE 2 

(ii) the universal cover M is S4/ + 3, and 
(iii) ± k-invariant of M is not a square modulo An. 
If I = 0, there exists a free action of QAn on a homology 3-sphere, such 

that the k-invariant of the action satisfies (iii). 

PROOF. Let D2n = {A, B:An = B2 = 1, BAB'1 = A' *} be the dihedral 
group of order 2n, and let Zj>27"7", ƒ] be the subring of the quaternion 
numbers generated by e2ni/n and ƒ There is a cube of ring homomorphisms 
(shown in collapsed form), 

<\-A + A2 

+ A"-1} 

Z[e2nil\j]^^M(2;F2[Ç+\IQ) >0< F „ [ . / ] ^ -^-Z[e2*ll\j] 

which leads to an exact sequence of Wall groups: 

0 -> L3(Z[Ô4n]) * L3(Z[ZJ) 0 L3(Z[D2n]) 0 L3(Z[e2"i/nJ]) 

- L3(Fn[/]) 0 L3(Z[Z2]) 0 L3(M(2; F2[Ç + l/(])) 

We look at the image of our surgery obstruction under SC. According to 
H. Bass, I. Berstein and others, the Wall group of Z4 is cyclic of order 2, 
and by the calculation in [1], an element in L3(Z[D2n]) is detected by its 
image in L3(Z[Z2]) and semicharacteristic classes. The third group 
L3(Z[e2ni,nJ]) can be studied through the homomorphism 

/

modulo subgroup generated 
by units and squares in 
Z [2 cos(27u/n)] 

defined by the spinor norm, see [9]. Spin is actually injective, and for the 
problem on hand, one can show that both the spinor norm and the semi-

< 2 , l + 4 + » 
+ An~l> 

< " , B Z + 1> (l-A + A 
+ A"-1} 

4- / „2niln 1 \ 



1973] FREE FINITE GROUP ACTIONS ON S3 215 

characteristic classes are zero. Possibly by changing the normal invariant 
we can kill off any obstruction in L3(Z [Z4]), and by exactness the theorem 
follows. 
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