ON HOLOMORPHIC FAMILIES OF POINTED **RIEMANN SURFACES**

BY CLIFFORD J. EARLE¹

Communicated by F. W. Gehring, June 26, 1972

According to a theorem of A. Grothendieck [4] the Teichmüller space of a closed Riemann surface of genus $p \ge 2$ is the universal parameter space for holomorphic families of marked Riemann surfaces of genus p. In this note we offer a corresponding description for every finite-dimensional Teichmüller space T(p, n) and discuss the universal families $\pi: V(p, n) \to T(p, n)$. Detailed proofs will be given elsewhere.

1. The space T(p, n). Let X be the smooth (C^{∞}) oriented closed surface of genus $p \ge 0$, and let x_1, x_2, \dots be a sequence of distinct points on X. Set $X_0 = X$, $X_n = X \setminus \{x_1, \dots, x_n\}$, $n \ge 1$. Let Diff⁺ X be the group of orientation preserving diffeomorphisms of X, with the C^{∞} topology. We define the subgroups

Diff⁺
$$(X, n) = \{ f \in \text{Diff}^+ X ; f(X_n) = X_n \},$$

 $G_n = \text{the path component of the identity in Diff}^+ (X, n).$

Next we form the space M of smooth conformal structures (= complex structures) on X, again with C^{∞} topology. Diff⁺ X acts on M from the right by pullback. If the inequality

$$(1) 2p-2+n>0$$

holds, then the group G_n acts freely, continuously, and properly (see [3]) with local sections, and we have a principal G_n -fibre bundle. The base space M/G_n of this bundle is, by definition, the Teichmüller space T(p, n). It is well known that T(p, n) has a natural complex structure and can be imbedded in C^d as a bounded open contractible domain of holomorphy [2], d = 3p - 3 + n.

- 2. *n*-pointed families. Suppose the integers $p, n \ge 0$ satisfy (1). An *n*pointed family (of closed Riemann surfaces of genus p) consists of a pair of complex manifolds V and B, a holomorphic map $\pi: V \to B$, and n holomorphic sections $s_i: B \to V$ such that
 - (i) π is a proper submersion,

AMS (MOS) subject classifications (1970). Primary 32G15, 14H15. 1 The author is grateful to the Institut Mittag-Leffler for financial support while this research was done.

- (ii) $\pi^{-1}(t)$ is diffeomorphic to the closed surface X of genus p, for all t in B.
- (iii) the sections s_1, \ldots, s_n are disjoint (i.e., $s_j(t) \neq s_k(t)$ for all t in B if $j \neq k$).

Given the *n*-pointed family $\pi: V \to B$, set

$$V' = V \setminus \bigcup_{j=1}^{n} \text{ range } s_j.$$

The restriction of π maps V' onto B, and $\pi: V' \to B$ is a smooth fibre bundle with fibre X_n and structure group Diff⁺ (X, n). If the structure group of that bundle is reduced to the subgroup G_n , we say that the family $\pi: V \to B$ is marked. In other words, an n-pointed family is marked by choosing a homotopy basis on each "punctured fibre" $\pi^{-1}(t) \cap V'$ in a manner that depends continuously on t.

A map of marked (n-pointed) families is by definition a pair of holomorphic maps $f: V_1 \to V_2$ and $g: B_1 \to B_2$ such that $f(V_1') = V_2'$ and (f', g) is a map of G_n -bundles, where $f' = f|V_1'$.

THEOREM 1. There is a marked n-pointed family $\pi: V(p, n) \to T(p, n)$ such that, for every marked n-pointed family $\pi_1: V_1 \to B_1$, there is a unique map of marked families

$$V_{1} \xrightarrow{f} V(p, n)$$

$$\pi_{1} \downarrow \qquad \pi \downarrow$$

$$B_{1} \xrightarrow{g} T(p, n).$$

Of course the universal property described in Theorem 1 uniquely determines both V(p,n) and T(p,n) as complex manifolds. For n=0, Theorem 1 reduces to Grothendieck's theorem [4]. The general case is proved by the same method. Topologically, $\pi:V(p,n)\to T(p,n)$ is the G_n -bundle with fibre X associated to the principal G_n -bundle $M\to T(p,n)=M/G_n$. The cross-sections of π are determined by the points x_1,\ldots,x_n on X (which are fixed by G_n), and $\pi:V(p,n)'\to T(p,n)$ is the associated bundle with fibre X_n . The "punctured" fibre space V(p,n)' is more familiar, and perhaps more natural, than V(p,n). Bers has shown [1] that T(p,n+1) can be interpreted in a natural way as the holomorphic universal covering space of V(p,n)'.

3. **The modular group.** Since the group $Diff^+(X, n)$ acts on M, and G_n is normal in $Diff^+(X, n)$ the quotient group $\Gamma(p, n)$ acts on T(p, n). $\Gamma(p, n)$ is called the (Teichmüller) modular group. This group does not always act effectively on T(p, n); however, it acts also on the fibre space V(p, n) and there it acts very effectively.

THEOREM 2. $\Gamma(p, n)$ acts on V(p, n) and T(p, n) as a group of holomorphic

automorphisms satisfying

$$\pi(v \cdot \gamma) = \pi(v) \cdot \gamma$$
 for all $v \in V(p, n), \gamma \in \Gamma(p, n)$.

Further, if $v \cdot \gamma = v$ for all v in some fixed fibre $\pi^{-1}(t_0)$, then $\gamma = id$ in $\Gamma(p, n)$.

Example. The modular group $\Gamma(2,0)$ has in its center one nontrivial element γ , of order two. γ fixes every point of T(2,0) and therefore maps each fibre $\pi^{-1}(t)$ of V(2,0) onto itself. Each fibre is a closed Riemann surface of genus two, hence hyperelliptic, and γ on each fibre is the hyperelliptic involution. Let $\Gamma_0 = \{\gamma, \text{id}\}$ be the center of $\Gamma(2,0)$. Then $T(2,0)/\Gamma_0 = T(2,0) \cong T(0,6)$, and $V(2,0)/\Gamma_0 \cong V(0,6)$. The six cross-sections of $\pi:V(0,6)\to T(0,6)$ map T(0,6) onto the six sheets of the branch locus of the map from V(2,0) onto V(0,6). The modular groups $\Gamma(1,1)$ and $\Gamma(1,2)$ also have nontrivial centers which act trivially on T(1,1) and T(1,2), but which act on V(1,1) and V(1,2) by an involution on each fibre.

4. Sections of $\pi: V(p, n) \to T(p, n)$. John Hubbard has proved [5] that the map $\pi: V(p, 0) \to T(p, 0)$ has no holomorphic sections if $p \ge 3$ and exactly six sections if p = 2. For $n \ge 1$, the map

$$\pi:V(p,n)\to T(p,n)$$

has n holomorphic sections given, and it makes sense to ask whether π has a holomorphic section disjoint from the given ones (i.e., taking its values in V(p, n)). We conjecture that no such sections exist unless p = 1 and n = 1 or 2. For the case p = n = 1, we can prove that only the obvious sections exist. We formulate that fact as

THEOREM 3. Let $U = \{z \in C : \text{Im}(z) > 0\}$ be the upper halfplane. Suppose $f: U \to C$ is a holomorphic function such that

$$f(z) \neq m + nz$$
 for all $z \in U$, all $m, n \in Z$.

Then f(z) = a + bz, where a and b are real and not both integers.

Our proof of Theorem 3 follows the method of Hubbard in [5]. It would be interesting to have a direct proof.

ADDED IN PROOF. After submitting this paper, the author learned that M. Engber proved a stronger form of Theorem 1 independently in his 1972 Columbia thesis.

REFERENCES

1. L. Bers, Fibre spaces over Teichmüller spaces (to appear).

^{2. ——,} Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. (1972).
3. C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Differential Geometry 3 (1969), 19-43. MR 43 #2737a.

- 4. A. Grothendieck, Techniques de construction en géométrie analytique, Séminaire H. Cartan 1960/61, Exposés 7, 17, École Normale Supérieure, Secrétariat mathématique, Paris, 1962. MR 26 # 3562.
- 5. J. Hubbard, Sur la non-existence de sections analytiques à la courbe universelle de Teichmüller, C. R. Acad. Sci. Paris Sér A-B 274 (1972), A 978-A 979.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14850 MITTAG-LEFFLER INSTITUTE, DJURSHOLM, SWEDEN