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1. Introduction. In this announcement we present characterizations of 
weakly compact and compact operators defined on function spaces. 
Besides the space of totally measurable functions, we consider the space 
of all Banach-valued continuous functions, where the topology of the 
space is either the compact-open topology or the topology generated by 
the supremum norm on functions vanishing at infinity. The main tools 
are a recent result of Brooks [5] concerning weak compactness of vector 
measures, and integral representation theorems in a very general setting [8] 
which serve to unify the existing theorems of this type and facilitate the 
study of operator theory. Our characterization provides a natural and 
simple condition for operators to be weakly compact—namely that 
m(At) -> 0, whenever At \ 0 , where m is the semivariation of the represent­
ing measure for the operator. This extends the Bartle-Dunford-Schwartz 
theory [2] for weakly compact operators from C(S) into X. The necessity 
part of Theorem 1 extends the work of Batt and Berg [4]. Also we give a 
necessary and sufficient condition, in terms of the underlying topology 
of the domain space, in order that the classes of weakly compact and 
compact operators coincide. Finally in §4 we briefly mention additional 
results concerning operators. In a later paper [7], representations in the 
setting of locally convex spaces and applications will be given. 
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2. Definitions and notation. H is a Hausdorff space such that the set of 
all continuous scalar functions separates points of H. E and F are Banach 
spaces with conjugate spaces JE* and F* respectively; E% and F* denote 
the unit spheres. We regard F as a subset of F**. C(H, E) is the space of all 
continuous £-valued functions defined on H9 where C(H9 E) is equipped 
with the compact-open topology. If if is a locally compact Hausdorff 
space, C0(H9E) denotes the space of continuous £-valued functions 
vanishing at infinity. 

B(E9 F**) is the space of operators (= bounded linear mappings) from E 
into F**. The (7-algebra of Borel subsets of H is denoted by 2. If 
iw:E-• £(F,F**) is finitely additive, define the semivariation m of m 
as follows: m(A) = sup^m^)*^, where the supremum is taken over all 
finite disjoint subsets At of A and x^E^ For zeF*9 let m2:2 -• £* be 
defined by mz(A)x = (m(A)x9 z>, xeE. The total variation function of a 
set function \i is denoted by |/i|. A representing measure m for the operator 
T defined on either C(H9 E) or C0(H9 E) into F is a finitely additive set 
function HI:2 -» B(E9F**) with finite semivariation such that: (i) T(f) 
= \f dm for each ƒ in the domain of T; (ii) \mz\ is a regular Borel measure 
on S, for each zeF*. We write T+-*m to indicate this correspondence. 
A set function m is strongly bounded (s-bounded) if m(A^ -> 0, whenever 
{Ai} is a disjoint sequence of sets. When T<r^m9 this condition is equivalent 
to m(Ai) -• 0, whenever At \ 0 . This concept was introduced in Lewis 
[12] under the name variational semiregularity (vsr). We remark that 
countable additivity of the measure does not imply s-boundedness [13]. 

Let 01 be a ring of sets. The Banach space of all finitely additive set 
functions from 01 into F, with the total variation norm, is denoted by 
fa{0t9 F). The normed space of totally ^-measurable £-valued functions 
is denoted by ME(0t)9 where the norm is the supremum norm. Recall that 
a function is totally ^-measurable if it vanishes outside of a set in 0t and 
is the uniform limit of $?-measurable simple functions. We say m is a 
representing measure for an operator T:ME(0l) -» F if m\0t -> B(E9 F) is 
finitely additive with finite semivariation and T{f) = ƒ ƒdm. The bilinear 
integration theory used is defined in [8]. 

3. The main results. 

Theorems 1 and 2 below can be strengthened by assuming that £* and 
£** have the Radon-Nikodym property and each m(A) is weakly com­
pact, but for simplicity we impose the stronger assumption that E be 
reflexive. A similar observation holds for Proposition 3 except that K 
acting on each A must be relatively weakly compact. 

THEOREM 1. Suppose that T is an operator defined on C(H, E) or C0(H9 E) 
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into F with representing measure m. If T is weakly compact, then m is 
strongly bounded. Conversely, if E is reflexive and m is strongly bounded, 
then T is weakly compact. 

REMARK 1. If £ is not reflexive, then there always exists a nonweakly 
compact operator with an s-bounded representing measure. 

REMARK 2. The above theorem extends the Bartle-Dunford-Schwartz 
theorem [2] in the case E is the scalar field; in this case countable additivity 
is equivalent to s-boundedness. 

THEOREM 2. Let 01 be a ring of sets. Suppose that T: ME(â$) -^ F is an 
operator with representing measure m. If T is weakly compact, then m is 
strongly bounded. Conversely, if E is reflexive and m is strongly bounded, 
then T is weakly compact. 

The proofs of the above theorems use the following two results. 

PROPOSITION 3 (BROOKS [5]). If K is a relatively weakly compact subset 
of fa(0t,F), then: (i) K is bounded; (ii) the family {|ju|:/ieJ£} is uniformly 
strongly additive, that is \fi\(Ai) -+0 uniformly for /j,eK, whenever {At} is 
a disjoint sequence. Conversely, if F is reflexive, conditions (i) and (ii) imply 
that K is relatively weakly compact. 

The next proposition uses the techniques in Brooks and Lewis [7]. 
For related representation theorems see [8], [10], [11] and [18]. 

PROPOSITION 4. If T is an operator defined on C(H, E) or C0(H, E) into 
F, then T has a unique representing measure. 

REMARK 3. We use the fact that £-valued simple functions can be 
embedded in C0(H, £)**. In fact, the mapping from ME(E) into C0(H, £)** 
is an isometric isomorphism. If C(H, E) is the domain of T, then m has 
compact support. 

Recall that a dispersed topological space is a space containing no 
nonempty perfect sets. C(H) is the space of all continuous scalar-valued 
functions defined on H. While the equivalence of (a) and (b) in the fol­
lowing theorem was established in [17], we present a more complete 
statement in terms of vector measures. 

THEOREM 5. Let H be a dispersed compact Hausdorff space and let F be 
a real Banach space. Suppose that T: C(H) -^ F is an operator and m is the 
representing measure for T. Then the following are equivalent: 

(a) T is compact; 
(b) T is weakly compact; 
(c) m is strongly bounded; 
(d) #fi:Z->F. 

Conversely, if conditions (a) and (b) are always equivalent, then the compact 
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Hausdorff space H is dispersed. 

4. Additional results. I. Suppose £ is a weakly sequentially complete 
space in which weak and strong sequential convergence are equivalent. 
Then every operator T: C0(H9 E) -• F, which has an s-bounded represent­
ing measure, maps weakly convergent sequences into norm convergent 
sequences—that is, C0(H9 E) has the strong Dunford-Pettis property. In 
particular, if F = C0(H9 E) and T is weakly compact, then T2 is compact. 
Therefore, no infinite dimensional reflexive subspace of C0(H, E) can be 
complemented in C0(H9 E). This extends a result of Grothendieck. 

II. It is of interest to determine when m takes its values in the subspace 
B(E, F) of B(E9 F**). If T<-+ m, where T is an operator on C0(H9 E\ then 
m takes its values in B(E9 F) if and only if Tx : C0(H) -• F is weakly compact 
for each xeE (here Tx(f) = T(x/)). It follows that if m is countably 
additive, then m takes its values in B(E9 F). 

III. It follows from a result of Pelczynski [16] and Theorem 5 that if F 
has no subspace isomorphic to c0 and if is a dispersed compact Hausdorff 
space, then every operator T: C(H) -* F is compact (cf. [3, Corollary 2, 
p. 913] and [9, p. 515]). 

IV. It was shown in [6] that if £ is the scalar field, then the pointwise 
limit of finitely additive s-bounded measures is s-bounded. This result 
fails in general; the limit measure can even be chosen to be a countably 
additive Baire measure. The following are equivalent: (i) the Banach 
space F does not contain c0 ; (ii) for each H and each E the limit of every 
uniformly bounded (in semivariation) pointwise convergent sequence of 
s-bounded representing measures mt: 2(#) -• B(E9 F) is s-bounded; 
(iii) for each H and each E a representing measure m: S(if) -> B(E9F) 
is countably additive if and only if HI is s-bounded. 

V. Suppose E is reflexive and F does not contain c0. If the weakly 
compact operators Tn : ME(0t) -» F converge pointwise to Tand uniformly 
on sets { x ÇA : x e Ex} for each A e 3&9 then T is weakly compact. 

VI. The seminoma p(z) = |iwz|(fl) defined on F* has been studied in [14]. 
We show that if T is an operator on C(H9 E) and T*+ m, then Tis compact 
if and only if (Ff, p) is a compact space; T is compact with dense range 
if and only if p induces the weak* topology on F*. 
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