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The purpose of this note is to outline a proof of the following converse 
to the mean value theorem for harmonic functions in two variables. Details 
will appear in [9]. 

THEOREM 1. Let Qbe a bounded Lipschitz domain in the plane, and let f be 
a Lebesgue measurable function on Q such that \f(x)\ ^ g(x), xeQ, for some 
positive harmonic function g on Q. If for each x e Q there is a disc contained 
in Q and centered at x over which the average off is f(x), and if ô(x), the 
radius of this disc, as a function of x is bounded away from 0 on compact 
subsets of Q, then ƒ is harmonic. 

Our study has been motivated by the special case of Theorem 1 stated by 
Feller [5] in which Q is the unit disc, ƒ is bounded, and <5(x) = d(x, Qc) is the 
distance from x to the complement of Q. A proof of Feller's assertion 
appears in [1]. In [2], Baxter obtains the conclusion of harmonicity in any 
dimension under the following assumptions: (a) Q is a C1 manifold with 
boundary, (b) ô(-) is measurable, (c) ƒ is bounded, and (d) for some con­
stant c > 0, ô(x) ^ cd(x, Qc). In a later paper [6], Heath obtains the same 
conclusion under assumptions (b), (c), (a') Q is a bounded region in Rm, 
and (d') for some constant c > 0, (1 - c)d(x, Qc) ^ <5(x) ̂  crf(x, Qc). 

Our approach to Theorem 1, outlined below, differs from the papers 
cited above, although [6] also uses a probabilistic argument. The extension 
of Theorem 1 to n ^ 3 dimensions is almost immediate once our "density 
theorem," Theorem 3, has been so extended. 

Below ij/(h,5,x), xeft, 0 < ô ^ d(x,Qc), denotes the average of the 
measurable function h over the disc, Bô(x\ of radius ô centered at x. The 
assumption in Theorem 1 becomes \j/( ƒ, <5(x), x) = /(x), x e Q. 

LEMMA 1. Iff ô and g are as in Theorem 1, there exist Borel functions f0 

and ô0 such that f0 — f a.e. on Q, ö0(x) ^ <5(x), xeQ, |/0I ^ & und 
H /o, <5oM, x) = /o(x), x 6 fi. 

If f0 can be proved harmonic, then because ƒ = f0 almost everywhere, 
f(x) = ij/(ƒ,<5(x),x) = \l/(/0,<5(x),x) = /o(x), xeQ, and ƒ is harmonic. We 
are thus free to assume both ƒ and ô Borel. 
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Define a Markov transition operator P(x, y) by P(x, y) = m(Bô(x))~{, 
y e Bô(x\ ô = <5(x), and P(x, y) = 0, y $ Bô(x). Here m(-) denotes Lebesgue 
measure. Following Feller we use the positive harmonic function g in 
Theorem 1 to construct a second transition operator 

Pg(x,y)^g(xy1P(x,y)g(y). 

Let 9C = Q x Q x • • • with coordinate functions x„, n = 1, 2 , . . . , and 
product Borel (7-field ^ = #(x l 9 x 2 , . . . ) . On M we define a probability 
measure \x% which realizes the Markov chain starting at x e Q and governed 
by Pg. Let ^ g J b e the sets representable as E = Q x F, or what is the 
same, E = aE = a~1E, where <r is the left shift on /. ^ 7 , the "invariant 
<x-field," is a sub-(T-field of J ^ = f]n 0&{xn, x„+15...), the "tail-cr-field." The 
following lemma is very easy. 

LEMMA 2. For any pair x, y e Cl the measures JX%, JA* are mutually absolutely 
continuous on &j. 

REMARK. With additional assumptions on Ô, e.g. (d) above or <5 uniformly 
Lipschitz on Q, we can prove mutual absolute continuity on $^. We can­
not thus far prove mutual absolute continuity on # w for arbitrary S. 

The function F(x) = /(x)/g(x), x e Q, is a bounded Borel solution to 
PgF = F, and therefore the process Fn{co) = F(xn((o)) is a bounded /4 
martingale for any starting point x. By the martingale theorem and Lemma 
2 there exists a 3&l measurable function F^ such that lim„ Fn(a>) = F0D(m), 
a.e. /4 , and F(x) = Jz F^(œ)pL%(dœ\ all xeQ. Noting that F^ is uniformly 
approximable by linear combinations of characteristic functions of &Ë sets, 
and that g(x)F(x) = /(x), we have that f(x) is locally uniformly approxi­
mable by linear combinations of functions of the form g(x)/4(£), Eeffij. 
Therefore, 

LEMMA 3. If g(x)fig
x(E) is harmonic for all Ee@n then ƒ is harmonic. 

The relationship between 3è) and solutions to Pf = ƒ was first studied 
in the case of countable state Markov chains by Blackwell [3]. 

Fix any point x0 e Q and let J/(Q) be the extreme points of the set of 
positive harmonic functions on Q which assume the value 1 at x0. There 
exists a finite Borel measure A on M such that g(x) = \M h(x)A(dh\ x e Q 
[8]. From this representation it follows by a simple argument that 

g(xK(£) = f h(x)fih
x(E)Mdh) 

holds for all EeMAfEe âêt, and if h and x are such that iih
x(E) = 0 (resp. 1 ), 

then for all yef i , fih
y(E) = 0 (resp. 1) by Lemma 2. If there exists some x 
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such that for all heJt, fih
x(E) = 0 or 1, then the Borel set E0 = {%£(£) 

= 1} will be such that for all x 

g(x)n*x(E) = f h(x)A(dh) 

and g(x)n*(E) is harmonic. Theorem 1 is thus a consequence of 

THEOREM 2. If Q is a bounded Lipschitz domain in the plane, then 3di is /4 
trivial for every g e Jt(Q) and xeQ. 

Space does not permit an outline of the proof of Theorem 2. The proof 
uses results from potential theory (particularly [7]) and probability theory. 
Another important ingredient is the following theorem which may be of 
independent interest. 

THEOREM 3. There exists a function q>(P) > 0, 0 < /? ̂  1, with the fol­
lowing property. If S is the unit square in the plane, and if A c S is Lebesgue 
measurable with m(A) = p > 0, there exists a point xeA such that m(A n Q) 
^ cp(P)m(Q) for every square Q such that xeQ Ç S. 

We obtain <p(/J) > 2~288jS36, but the exponent 36 can be lowered, at 
least below 25. If Q is required to have sides parallel to the axes, the 
exponent drops to 6, and simple examples show it can be no lower than 2. 
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