A CONVERSE TO GAUSS' THEOREM

BY WILLIAM A. VEECH1

Communicated by Harry Kesten, November 11, 1971

The purpose of this note is to outline a proof of the following converse to the mean value theorem for harmonic functions in two variables. Details will appear in [9].

THEOREM 1. Let Ω be a bounded Lipschitz domain in the plane, and let f be a Lebesgue measurable function on Ω such that $|f(x)| \leq g(x)$, $x \in \Omega$, for some positive harmonic function g on Ω . If for each $x \in \Omega$ there is a disc contained in Ω and centered at x over which the average of f is f(x), and if $\delta(x)$, the radius of this disc, as a function of x is bounded away from 0 on compact subsets of Ω , then f is harmonic.

Our study has been motivated by the special case of Theorem 1 stated by Feller [5] in which Ω is the unit disc, f is bounded, and $\delta(x) = d(x, \Omega^c)$ is the distance from x to the complement of Ω . A proof of Feller's assertion appears in [1]. In [2], Baxter obtains the conclusion of harmonicity in any dimension under the following assumptions: (a) Ω is a C^1 manifold with boundary, (b) $\delta(\cdot)$ is measurable, (c) f is bounded, and (d) for some constant c > 0, $\delta(x) \ge cd(x, \Omega^c)$. In a later paper [6], Heath obtains the same conclusion under assumptions (b), (c), (a') Ω is a bounded region in R^m , and (d') for some constant c > 0, $(1 - c)d(x, \Omega^c) \ge \delta(x) \ge cd(x, \Omega^c)$.

Our approach to Theorem 1, outlined below, differs from the papers cited above, although [6] also uses a probabilistic argument. The extension of Theorem 1 to $n \ge 3$ dimensions is almost immediate once our "density theorem," Theorem 3, has been so extended.

Below $\psi(h, \delta, x)$, $x \in \Omega$, $0 < \delta \le d(x, \Omega^c)$, denotes the average of the measurable function h over the disc, $B_{\delta}(x)$, of radius δ centered at x. The assumption in Theorem 1 becomes $\psi(f, \delta(x), x) = f(x)$, $x \in \Omega$.

LEMMA 1. If f, δ and g are as in Theorem 1, there exist Borel functions f_0 and δ_0 such that $f_0 = f$ a.e. on Ω , $\delta_0(x) \ge \delta(x)$, $x \in \Omega$, $|f_0| \le g$, and $\psi(f_0, \delta_0(x), x) = f_0(x)$, $x \in \Omega$.

If f_0 can be proved harmonic, then because $f = f_0$ almost everywhere, $f(x) = \psi(f, \delta(x), x) = \psi(f_0, \delta(x), x) = f_0(x)$, $x \in \Omega$, and f is harmonic. We are thus free to assume both f and δ Borel.

AMS 1970 subject classifications. Primary 31C99; Secondary 60J45. Key words and phrases. Harmonic, Lipschitz domain, invariant σ -field, martingale.
¹ Sloan foundation fellow. Research in part supported by NSF-GP-18961.

Define a Markov transition operator P(x, y) by $P(x, y) = m(B_{\delta}(x))^{-1}$, $y \in B_{\delta}(x)$, $\delta = \delta(x)$, and P(x, y) = 0, $y \notin B_{\delta}(x)$. Here $m(\cdot)$ denotes Lebesgue measure. Following Feller we use the positive harmonic function g in Theorem 1 to construct a second transition operator

$$P_{g}(x, y) = g(x)^{-1}P(x, y)g(y).$$

Let $\mathscr{X}=\Omega\times\Omega\times\cdots$ with coordinate functions $x_n,\,n=1,2,\ldots$, and product Borel σ -field $\mathscr{B}=\mathscr{B}(x_1,x_2,\ldots)$. On \mathscr{B} we define a probability measure μ_x^g which realizes the Markov chain starting at $x\in\Omega$ and governed by P_g . Let $\mathscr{B}_I\subseteq\mathscr{B}$ be the sets representable as $E=\Omega\times E$, or what is the same, $E=\sigma E=\sigma^{-1}E$, where σ is the left shift on χ . \mathscr{B}_I , the "invariant σ -field," is a sub- σ -field of $\mathscr{B}_\infty=\bigcap_n\mathscr{B}(x_n,x_{n+1},\ldots)$, the "tail- σ -field." The following lemma is very easy.

LEMMA 2. For any pair $x, y \in \Omega$ the measures μ_x^g, μ_y^g are mutually absolutely continuous on \mathcal{B}_I .

REMARK. With additional assumptions on δ , e.g. (d) above or δ uniformly Lipschitz on Ω , we can prove mutual absolute continuity on \mathscr{B}_{∞} . We cannot thus far prove mutual absolute continuity on \mathscr{B}_{∞} for arbitrary δ .

The function F(x) = f(x)/g(x), $x \in \Omega$, is a bounded Borel solution to $P_gF = F$, and therefore the process $F_n(\omega) = F(x_n(\omega))$ is a bounded μ_x^g martingale for any starting point x. By the martingale theorem and Lemma 2 there exists a \mathcal{B}_I measurable function F_∞ such that $\lim_n F_n(\omega) = F_\infty(\omega)$, a.e. μ_x^g , and $F(x) = \int_x F_\infty(\omega) \mu_x^g(d\omega)$, all $x \in \Omega$. Noting that F_∞ is uniformly approximable by linear combinations of characteristic functions of \mathcal{B}_I sets, and that g(x)F(x) = f(x), we have that f(x) is locally uniformly approximable by linear combinations of functions of the form $g(x)\mu_x^g(E)$, $E \in \mathcal{B}_I$. Therefore,

LEMMA 3. If $g(x)\mu_x^g(E)$ is harmonic for all $E \in \mathcal{B}_I$, then f is harmonic.

The relationship between \mathcal{B}_I and solutions to Pf = f was first studied in the case of countable state Markov chains by Blackwell [3].

Fix any point $x_0 \in \Omega$ and let $\mathcal{M}(\Omega)$ be the extreme points of the set of positive harmonic functions on Ω which assume the value 1 at x_0 . There exists a finite Borel measure Λ on \mathcal{M} such that $g(x) = \int_{\mathcal{M}} h(x) \Lambda(dh)$, $x \in \Omega$ [8]. From this representation it follows by a simple argument that

$$g(x)\mu_x^g(E) = \int_{\mathcal{M}} h(x)\mu_x^h(E)\Lambda(dh)$$

holds for all $E \in \mathcal{B}$. If $E \in \mathcal{B}_1$, and if h and x are such that $\mu_x^h(E) = 0$ (resp. 1), then for all $y \in \Omega$, $\mu_y^h(E) = 0$ (resp. 1) by Lemma 2. If there exists some x

such that for all $h \in \mathcal{M}$, $\mu_x^h(E) = 0$ or 1, then the Borel set $E_0 = \{h | \mu_x^h(E)\}$ = 1) will be such that for all x

$$g(x)\mu_x^g(E) = \int_{E_0} h(x)\Lambda(dh)$$

and $g(x)\mu_x^g(E)$ is harmonic. Theorem 1 is thus a consequence of

THEOREM 2. If Ω is a bounded Lipschitz domain in the plane, then \mathcal{B}_1 is μ_x^g trivial for every $g \in \mathcal{M}(\Omega)$ and $x \in \Omega$.

Space does not permit an outline of the proof of Theorem 2. The proof uses results from potential theory (particularly [7]) and probability theory. Another important ingredient is the following theorem which may be of independent interest.

THEOREM 3. There exists a function $\varphi(\beta) > 0$, $0 < \beta \le 1$, with the following property. If S is the unit square in the plane, and if $A \subseteq S$ is Lebesgue measurable with $m(A) = \beta > 0$, there exists a point $x \in A$ such that $m(A \cap Q)$ $\geq \varphi(\beta)m(Q)$ for every square Q such that $x \in Q \subseteq S$.

We obtain $\varphi(\beta) > 2^{-288}\beta^{36}$, but the exponent 36 can be lowered, at least below 25. If Q is required to have sides parallel to the axes, the exponent drops to 6, and simple examples show it can be no lower than 2.

REFERENCES

- 1. M. A. Akcoglu and R. W. Sharpe, Ergodic theory and boundaries, Trans. Amer. Math. Soc. 132 (1968), 447-460. MR 37 # 369.
- 2. J. R. Baxter, Restricted mean values and harmonic functions, University of Minnesota, Minneapolis, Minn. (preprint).
- 3. D. H. Blackwell, On transient Markov processes with a countable number of states and stationary transition probabilities, Ann. Math. Statist. 26 (1955), 654-658. MR 17, 754.
- 4. J. L. Doob, Stochastic processes, Chapman & Hall, London; Wiley, New York, 1953. MR 15, 445.
 5. W. K. Feller, Boundaries induced by non-negative matrices, Trans. Amer. Math. Soc. 83
- (1956), 19-54. MŘ 19, 892.
- 6. D. Heath, Functions possessing restricted mean value properties, University of Minnesota,
- Minneapolis, Minn. (preprint).
 7. R. Hunt and R. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507-527.
- 8. R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc. 49 (1941), 137-172. MR 2, 292.
 - 9. W. A. Veech, The core of a measurable set and a problem in potential theory (submitted).

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77001