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1. Introduction. Our purpose is to survey some aspects of the global 
theory of holomorphic mappings, isolating along the way a few outstanding 
questions. 

The general problem is this : Let M and N be complex manifolds and 
ƒ \M -> N a holomorphic mapping. Study the position of the image f(M) 
in N. In particular, if S c N is a complex analytic subvariety, then setting 
Sf = f~l(S\ study the Sf c M as S varies among the subvarieties of N. 

The most important special case of this problem is when M = Cm and 
N = Pn, the complex projective space. Then ƒ may be given by n entire 
meromorphic functions 

f(z) = tfi(z),... ,/„(z)), z = (zl9..., zm) G C . 

The subvarieties S will be the zero sets of polynomials pa(w) (w 
= {wl9..., wn)eCn), and so our question amounts to globally studying 
solutions of the equations 

wj = fj(z) ( zeC) , 
(1) 

Pa(w) = 0. 
The following two examples illustrate the extremes in what is understood 

about this problem. 
EXAMPLE 1. Suppose that f:C -• P1 is an entire meromorphic function, 

so that (1) reduces to studying the roots of the equation 

(2) f(z) = a9 zeC and aeP1. 

The most immediate global property is the Liouville theorem, which says 
that the image f(C) is dense in P1, unless of course ƒ is constant. A much 
more precise result is the Picard theorem, which states that a nonconstant ƒ 
can omit at most two values. Finally, the most penetrating study of the 
equation (2) is that by R. Nevanlinna [2], who found that, with at most two 
exceptional values a e P1, the "density" of the solutions of (2) in the disc 
\z\ < r is positive as r -» oo. This result is a beautiful and far reaching 
quantitative refinement of the Picard theorem, and will be discussed 
further below. 

EXAMPLE 2. Fatou and Bieberbach found a holomorphic mapping 
f-.C2 -• P2 which is one-to-one and whose image omits an open set in P2. 

1 Talk presented at the dedication of "Surge L," Stonybrook, New York, October 16, 
1971. Printed by invitation of the editors; received October 28, 1971. 
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Thus, the Liouville property and its subsequent refinements fail com­
pletely. To illustrate further how little we understand, Mark Green pointed 
out to me that it seems to be unknown whether the Euclidean volume of 
the image of an entire holomorphic mapping ƒ : C2 -» C2 is necessarily 
infinite ! 

To see in principle how Fatou-Bieberbach mappings can arise, we let 
V0 c C2 be an analytically embedded finite Riemann surface. Thus V0 is a 
compact Riemann surface minus at least one disc of positive radius, and as 
such there exists a bounded holomorphic function h0 on V0. It is easy to 
construct such V0 in C2, and this Riemann surface is then given by an 
equation 

where g G &(C2) is an entire holomorphic function on C2. Moreover, there 
is h G (9{C2) which restricts to h0 on V0. Now we assume the following 
stability property: Setting Vu = {(x,y):g(x9y) = u} and hu = h\VU9 the 
functions hu are bounded for all \u\ < e. If this is satisfied, then the map 

f = (g,h):C2^P2 

omits an open neighborhood of (0, oo). The Fatou-Bieberbach example 
is of this general character. 

These examples illustrate the fact that the equations (1) will have a much 
different behaviour when codim(S) = 1 than when codim(S) > 1. In the 
former case, there is pretty good evidence that the Picard theorem and 
Nevanlinna theory should go through more or less in general, and this will 
be discussed in the next two sections. In the latter case, the hope is that a 
reasonable theory can be expected for certain maps ƒ, and this will be 
discussed in §4 below. In §5 we return to the value distribution theory of 
divisors in a more algebro-geometric setting. 

2. Picard-type theorems for divisors. We want to discuss the qualitative 
position of the image for a holomorphic mapping 

(3) ƒ : Cm - Pn 

relative to the divisors on Pn. The most important divisors are linear 
hyperplanes, but it is essential to also study the case of hypersurfaces of any 
degree. Indeed, the understanding of this latter situation should not be too 
much different from that of a holomorphic mapping into a general smooth, 
projective variety V (cf. Carlson's thesis [6]). 

We begin with some notations. A (positive) divisor D in Pn may be 
uniquely written as a sum 

(4) D = nxDx + ••• + W/A 
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where the Dj are distinct irreducible hypersurfaces of degree dj and n} > 0. 
Then the degree of D is 

deg(D) = n^i + • • • + n{dx. 

We shall say that D has normal crossings if (i) all the Dj are smooth and all 
the multiplicities n,- = 1 ; and (ii) the local defining equations for the Dj 
passing through a fixed point always form part of a holomorphic coordi­
nate system. In case the Dj are linear hyperplanes, this means exactly that 
D ! , . . . , Dt are in general position. We denote the number / of components 
ofDby #(D). 

Let |D| be the complete linear system of all divisors of a fixed degree d. 
Any such D is given by the zeroes of a homogeneous polynomial P of 
degree d, and P is unique up to nonzero multiples. Thus |D| is a projective 
space. Furthermore, the Fubini-Study metric on Pn induces a metric on |D|, 
and we may let dfi(D) be the associated volume form normalized so that 

f dm = i. 
JDe\D\ 

We are now ready to discuss a holomorphic mapping (3). The usual 
Liouville theorem immediately implies that for nonconstant ƒ the image 
j\Cm) meets a dense set of divisors in |D| for any fixed degree. Indeed, for 
any two divisors Dl9 D2 e |Z)| there is a meromorphic function <j) on Pn such 
that <f) = 0 on Dt and (j> = oo on D2. If the image ƒ (Cm) omits a neighbor­
hood of D2 in |D|, then all pull-backs </><>ƒ are bounded holomorphic 
functions on Cm. Corresponding to the Picard theorem, the principal 
results are the following : 

(5) THEOREM (M. GREEN [5]). Let ƒ : Cm ->Pnbea holomorphic mapping 
whose image omits n + k linear hyperplanes in general position. Then the 
image is contained in a projective linear subspace of dimension [w/fc], and 
this bound is sharp. 

COROLLARY 1. A nondegenerate equi-dimensional map ƒ: Cn-+Pn can 
omit at most n + 1 hyperplanes in general position. 

COROLLARY 2. A nonconstant holomorphic curve f:C-+Pn can omit at 
most 2n hyperplanes in general position. 

Observe that both of these corollaries reduce to the usual Picard 
theorem when n = 1. Somewhat weaker versions of these results appear in 
Wu's book [3], and on the basis of these he was led to conjecture both of 
the corollaries. Similar results to the above have also been obtained by 
Fujimoto. 

(6) THEOREM ([6] AND [8]). An equi-dimensional holomorphic mapping 
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ƒ :Cn -> Pn which omits a divisor D with normal crossings and deg(D) ^ n + 2 
must be degenerate. 

In case D is a linear combination of hyperplanes, this theorem reduces to 
Corollary 1, above. In contrast to Corollary 2, the following example due 
to Kiernan shows that we cannot force a holomorphic curve to be 
degenerate simply by omitting a smooth hypersurface of arbitrarily high 
degree. 

EXAMPLE 3. Let s = ( - l)1/w. Then the map t -• [t9et91] from C to P2 

omits the smooth curve Xn
0 + X\ + X\ = 0 for any n > 0. 

Problem A. Let D be a divisor in Pn with normal crossings. Then, under 
what conditions on the degree deg(D) and number of components # (D) 
is a holomorphic mapping ƒ : Cm -• Pn- D necessarily constant? 

Problem B. Let D be a divisor in P" with normal crossings and 
ƒ : C -> Pn — D a holomorphic curve which misses D. Then if deg(Z)) 
^ n + 2, does the image/(C) lie in an algebraic subvariety of P"? 

3. Nevanlinna theory for divisors. We continue with the notations of §2. 
Let ƒ : Cm -• P" be a holomorphic mapping and set Dj = f~1(D) for a 
divisor D in P". Nevanlinna theory is a quantitative study of the "size" of 
Df as D varies in a complete linear system |D|. To make this precise, we 
shall use the following notations : 

B[r] = {zeCm :\\z\\ ^ r} = ball of radius r in Cm ; 

Df[r] = DfnB[r]; 
(_1\l/2 f m ) 

œ = v . ; < X rfz; A d^ f = flat Kâhler form on cm i 

t;(D, r) = f of~1 = area of £y[r] ; 

N(D,r)= v(D,t)dt/t2m-1 = counting function', and • 
Jo 

7 » = f N(D,r)dn(D) = order function. 
Jüe\D\ 

Thus, N(D, r) measures the area of £>ƒ in the ball of radius r, and T(r) is the 
average of the counting functions over all divisors of a fixed degree. The 
first main theorem (F.M.T.) of Nevanlinna theory [8] has as corollary the 
following remarkable inequality (Nevanlinna inequality) : 

(7) N(D,r) < T(r) + 0(1). 

Geometrically, this says that the size of any particular Df is always bounded 
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by the average size over all divisors in the linear system. (Here we make the 
obvious assumption that f(Cm) does not lie in any D.) Using (7), we may 
introduce the Nevanlinna defect 

(8) 0(D) = 1 - m[N{D9r)/T(r)l 
r-+ OU 

which has the two properties : 

0 ^ 0(D) ^ 1, and 

0(D) = 1 if f(Cm) does not meet D. 

In general, if ô(D) > 0, then the image of/meets D less often than on the 
average. Integration of (7) leads to the relation 

(9) f ô(D)dti(D) = 0, 
JDe\D\ 

which is a strong version of the Liouville theorem. 
The principal result in general Nevanlinna theory is the Ahlfors defect 

relation [3] : 

(10) THEOREM. Let ƒ : C -• Pnbea holomorphic curve which does not lie in a 
hyper plane, and suppose that Du... ,Dtare hyperplanes in general position. 
Then 

t S(Dj) ^ n + 1. 
i = i 

For n = 1, this is the famous defect relation of R. Nevanlinna. However, 
the «-dimensional version is by no means a direct generalization of the 
R. Nevanlinna result. The most trivial consequence of (10) is that a non-
degenerate holomorphic curve can omit at most n + 1 hyperplanes in 
general position. This n-dimensional version of the Picard theorem, due 
to E. Borel, is also a corollary of Green's theorem [5]. The defect relation 
(10) is more subtle than either the R. Nevanlinna or E. Borel theorems, as 
a glance at the difficulty of the proof suggests. 

There is also an equi-dimensional defect relation which deals with 
hypersurfaces rather than just hyperplanes. 

(11) THEOREM [8]. Let ƒ: C -> Pnbe a nondegenerate holomorphic map-
ping and Du...9Dt smooth divisors of degree d such that D = Dx 4- • • • + Dt 

has normal crossings. Then 

We observe that this result contains the R. Nevanlinna defect relation as 
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well as Corollary 1 to Theorem (5). It is, however, less deep than the Ahlfors 
relation (10). A principal open question in the study of how the divisors in 
Pn meet the image of a holomorphic mapping ƒ : Cm -* Pn is 

Problem C. Let ƒ : Cm -» Pn be a holomorphic mapping. Let Dl9..., Dt 

be smooth divisors in \D\, the complete linear system of divisors of degree d 
inP", and suppose that Dx + ••• + Dt has normal crossings. Assume finally 
that f(Cm) does not lie in any De|D|. Then is it true that £J= 1 ö(Dj) 
S {{n + D/d)? 

4. The case of higher codimension. Since the state of our knowledge is so 
primitive, we shall restrict our attention to the equi-dimensional case 
ƒ : Cn -* Pn, assume that ƒ is everywhere nondegenerate, and ask how many 
linear subspaces of fixed dimension d in Pn the image ƒ (Cn) meets? Because 
of the Fatou-Bieberbach example, this is probably not a good question as 
it stands. It was Chern who first showed that maps satisfying certain growth 
conditions had a dense image in Pn. The geometric nature of these "good" 
maps was clarified considerably by Wu [7], and Stoll put the theory in a 
general setting [4]. The answer which emerges is the following: Let a> be 
the flat Kâhler form onCw, <\> the Kâhler form of the Fubini-Study metric 
on />", and <j)f = ƒ*(</>). Define the order functions 

for k = 1,. . . , n. Then T^r) is the order function used in §3 above, and 
Tn{r) measures the volume of the image f(Cn). In general, the various Tk(r) 
need have little relation to one another, which reflects the fact that writing 
ƒ = ( fu • • • 9 fn)as a n «-tuple of meromorphic functions, the various ƒ• may 
not interact at all. Let T'k(r) denote the derivative of Tk{r\ 

(12) THEOREM, ƒƒ Iïmr^ JTi-^ry^Cr)] = 0, then the image f (Cn) meets 
almost all linear subspaces of codimension k in Pn. 

For k = 1, this says that ƒ should be nonconstant. If ƒ is uniformly 
quasi-oonformal in the sense that, for unit tangent vectors t l5 T2 toC", 

sup ^( t i ) / inf (t>f(x2) <; c < oo, 

then Theorem (12) holds (Wu). Such maps therefore satisfy the Liouville 
property relative to the linear subspaces of any dimension in Pn. 

A phenomenon related to the Fatou-Bieberbach example is the failure 
of the Nevanlinna inequality (7) for higher codimension : Let h e (9(Cn) be 
an entire holomorphic function, D = {h(z) = 0} the zero set of h9 and 

Mh(r) = max log \h(z)\ 
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the logarithm of the maximum modulus of h. Then the inequality (7) has as 
an easy consequence the estimate 

(13) v(D9r)/r2"-2 ^ cM„(2r), 

which bounds the growth of the area of D in terms of the modulus of h. 
On the other hand, recent work by Shiffman and Cornalba shows that 
there exist entire functions huh2e 0(C2) such that the number of common 
zeroes 

M*) = 0, 
h2(z) = 0, 

11*11 S r, 

in the ball of radius r cannot be estimated by Mhl(Xr) and Mh2(Xr) for 
any X > 0. 

In conclusion, the examples together with existing results perhaps sug­
gest the following: There should be a subclass of the holomorphic map­
pings/: Cm -* Pn which have good geometric and analytic properties. Such 
maps should satisfy a Nevanlinna inequality (7) and the Liouville property 
(9). 

Moreover, there should be functorial properties, such as : The restriction 
f\Ck -* P" belongs to the class if/: Cm -• Pwdoes. This class of maps, if it 
exists, would be the place where a reasonable geometric study of entire 
holomorphic maps takes place. 

The situation is perhaps a little reminiscent of studying the equation 
ƒ (z) = a where f(z) is a meromorphic function defined only in a finite disc 
\z\ < R. Then the value distribution theory has a good meaning only for 
those maps which satisfy T(r) -* oo as r -• R, where T(r) is the Nevanlinna 
characteristic function (cf. [2]). 

5. Value distribution theory for divisors on general algebraic varieties. In 
this section we assume some knowledge of algebraic geometry, line bundles 
(especially the canonical bundle), etc. A good reference is Chern [1]. 

Referring to Corollary 2 of Theorem (5) and Theorem (10), the integer 
n + 1 has special meaning for P", because a sum Dx + •-- + DH+iofn + 1 
hyperplanes is in the anti-canonical series |X*| where K is the canonical 
line bundle on Pn. This observation leads to a generalization of the equi-
dimensional defect relation (11). To state this, we let F be a smooth, pro­
jective variety of dimension n with canonical bundle Kv. For a divisor D 
on V, [D] denotes the corresponding line bundle, and for any line bundle L, 
c^L) is the first Chern class. If a, fi e H2(V9 R) are cohomology classes and 
XeR is a real number, then A > [a//?] means that Aj? — aeH2(K,R) is 
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represented by a positive definite (1,1) form, Similarly, we may define 
/ è [oilPI 

(14) THEOREM [8]. Let L be a positive line bundle and D l 9 . . . ,D26|L| 
smooth divisors such that D = Dx + • • • + Dt has normal crossings. Suppose 
that f:C"^> V is a nondegenerate holomorphic mapping, and define Nevan-
linna defects 0(D) (D e \L\) by (8). Then 

t *(Dj) ^ [ci(KMcx(L)]. 
j= i 

COROLLARY. If the canonical bundle Kv is positive, then any holomorphic 
mapping f:Cn^> V is degenerate. 

When K = P", this result reduces to Theorem (11) above. What is 
obviously desirable is to have a defect relation in the nonequidimensional 
case, even, or perhaps most importantly, for a holomorphic curve/: C -> V. 
For this, the analogue of Problem C is the following : 

Problem D. With the notations of Theorem (14) above, suppose that 
ƒ :C -+ V is a holomorphic curve such that the image/(C) does not lie in a 
divisor D e \L + Kv\. Then is £J = 1 S(Dj) ^ [^(fCJO/c^L)]? 

Two special cases of this problem occur when Kv > 0 and Kv = 0. In 
the first case, we may take L to be trivial and, specializing to the case 
dim V = 2, we have the 

Problem E. Let V be an algebraic surface with positive canonical bundle 
and ƒ : C -• V a holomorphic mapping. Then does the image f(C) lie in an 
algebraic curve in K? 

One difficulty in this question is that, contrary to the equi-dimensional 
case, ƒ may be a highly transcendental mapping and still have image con­
tained in algebraic curve. Since, for a given line Pl in P3 there are smooth 
surfaces of arbitrarily high degree containing P\ problem E represents a 
best possible conclusion. It is not known whether or not there are a finite 
number of rational maps f:C-+ V having distinct images; and this is 
another difficulty in the problem. 

In case Kv = 0, we are led to the following question : 
Problem F. Let V be an abelian variety, f:C ~» V a holomorphic map­

ping, and D a positive divisor on V. Then does the image f(C) meet D? 
In case ƒ is a group homomorphism, this problem (and more) was done 

by J. Ax in response to a question of Lang. 
Another open question concerning holomorphic maps and complex tori 

is this: 
Problem G. Let V be an n-dimensional complex torus and f:Cn-+ Va. 

nondegenerate holomorphic mapping. Then, is the image ƒ (Cn) dense in VI 
Our conclusion may be taken as stating that the geometric position of 

holomorphic curves in general algebric varieties is understood very little. 
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