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Introduction. Concrete associative algebras with a topology have 
long arisen in mathematical practice; thus, a notion of topological 
space with algebraic operations making it an associative algebra was 
in order. The subject naturally evolved into the present general 
theory of abstract topological algebras [5]. Classes of such objects 
(together with continuous maps respecting the algebraic structure) 
form categories which, understandably, do not share some important 
properties of their purely algebraic analogues. Specifically, their 
relation with the base category S of sets is not satisfactory. This is essen­
tially due to the fact that taking forgetful functors into S is forgetting 
too much. Also, the set of morphisms between any two such algebras 
naturally carries a topology which is inherited from the topologies 
of the algebras, and which is not taken into account (it is ignored) by 
the representable functors landing in S. 

The category of topological spaces is actually the natural base 
category (that is, the place where the forgetful and representable 
functors land) for a categorical approach to the study of classes of 
topological algebras. However, this category is not "set-like" enough 
to make such an approach possible. 

Categories which, like S, have enough structure to serve as base 
categories have been recognized by category theorists during the 
sixties ( [ l ] , [4]) when the concept of closed category was developed. 
Compactly generated topological spaces form such a convenient 
(closed) category [8]. 

We introduce here a systematic treatment of categories of topological 
algebras considered as categories based on the category K of compactly 
generated Hausdorff spaces. 

This leads to the definition of K-topological algebras. Roughly, a 
./^-topological algebra is a complex algebra with a topology making 
the operations continuous when restricted to compact subsets. This 
is a broad class of algebras, containing all algebras with jointly con­
tinuous product, but failing to contain some topological algebras with 
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discontinuous, separately continuous, product. However, some in­
teresting examples of the latter actually are .^-topological algebras, 
as in the case of von Neumann algebras with the strong topology. 

Our approach allows us to treat topologized algebraic structures in 
a purely algebraic way, the topological information being carried 
automatically due to the closed structure of K. 

We obtain functional representations of certain locally ra-convex 
algebras (considered as K-topological algebras), generalizing the 
Gelfand representation of commutative C*-algebras. This is done by 
interpreting functional representations within the general framework 
of a duality machinery. 

Some examples of interest to analysts are listed; proofs will appear 
in [3]. 

JK-topological algebras. For a Hausdorff topological space X define 
KeX to be the space KeX = co\ivnK^x K, where K runs over all the 
compact sets of X (colim = direct limit). KeX is the K-ification of X, 
and X is called a Kelley space if X = KeX. The identity map KeX-*X 
is clearly continuous. K will denote the category of all Kelley spaces 
and continuous maps; K is a (full) subcategory of the category Top2 
of all Hausdorff spaces and continuous maps, and Ke: Top2—>jFC is a 
reflection ( = right adjoint to the inclusion K—>Top2). For X, F £ K , 
the space of continuous maps X—> Y with the compact-open topology 
is a Hausdorff space; denote by K(X, Y) its kelleyfication. Then K is 
a symmetric monoidal, closed, complete and cocomplete category, 
with tensor product given by the (categorical) product XE3F 
= Ke(XX Y) (XX F=cartes ian product in Top2). Clearly the field 
C of complex numbers with its ordinary topology is an object of X. 

DEFINITION 1. A K-topological algebra is an algebra over C in K. 
Tha t is, it is a Kelley space X together with maps in K: + :XI2X—»X, 
0:1->X, - : X - » X , - :XI2X->X, and -:CXX->X, satisfying the 
standard relations expressing associativity, commutativity (for + ) , 
etc. Thus, a K-topological algebra is defined within K as the ordinary 
concept of u associative algebra" defined within S. 

Examples. We give a list of examples of algebras whose kelleyfica-
tions are if-topological algebras: 

(a) all topological algebras with jointly continuous product; 
(b) the following algebras with separately continuous product: 

( i ) v o n Neumann algebras with the strong topology; 
(ii) L°°(ij,)f ii a measure, with the w*-topology as dual of L1(JJL); 

(iii) the algebra of bounded holomorphic functions on the unit 
disc with the strict topology; 
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(iv) the convolution algebra of all bounded measures on a com­
pact group, with the vague topology, 

(c) the algebra A consisting of all continuous complex functions on 
the interval of ordinals [l, 12] (12= 1st uncountable ordinal) with the 
product ƒ'g=f(ti)g(12)e, where e is the function e(a) — l for each 
ordinal 1 ^ a ^ 12 and the topology of uniform convergence on the 
initial segments [l, a ] , a<12: observe that this product is not sep­
arately continuous. 

Categories of ^-topological algebras. A homomorphism between 
K-topological algebras A, B is a map | -4 |—>|JB| in K commuting 
with the algebraic operations, where we denote by \A\, resp. | B | , 
the Kelley space supporting the algebra A, resp. B. The kelleyfication 
of the compact-open topology on the set of homomorphisms between 
A and B defines an object A(A y B)(E:K, and the class of ^-topological 
algebras and homomorphisms is a X-category to be denoted here by 
A. A' will denote the subcategory of algebras having an identity and 
homomorphisms preserving it. The forgetful functor A—>K defined 
by -4 —>I 4̂ | is a üC-functor. Moreover we have (with the terminology 
of [2]): 

THEOREM 2 (a). The K-categories A and A' are K-complete, K-cocorn-
plete {in particular tensored and cotensored). 

(b) The forgetful functors A-+K and A'-^K (A —» | A | ) have K-left 
adjointsy and in fact, are K-monadic. 

(c) The inclusion A'—*A has a K-left adjoint. 

I t is easy to see that the limits in A are the algebraic limits (point-
wise operations) with the unifications of the limit topologies. The 
cotensor of a Kelley space X with a ^-topological algebra A is the 
algebra of continuous functions X—>A with pointwise operations and 
the i£-ification of the compact-open topology. In particular, when 
A = Cy the cotensor gives a categorical characterization for the algebra 
C(X) of all complex continuous functions on X (again, with the 
J£-ification of the topology of uniform convergence on compact sets 
of X). There are no simple descriptions of the dual concepts (colimits 
and tensors). Observe that Theorem 2(b) means that there is a free 
./^-topological algebra over an arbitrary Kelley space, and Theorem 
2(c) means that it is always possible to embed a ^-topological 
algebra into a ^-topological algebra with identity. 

Duality and functional representations. Denote by A(X, A ) G ^ ' 
the cotensor of XEK with A EA' (cf. [2]), and let T = (T\ rj', MO be 
the X-monad in A' defined by the pair of adjoints A'{ —, C), A( —, C) 



978 E. J. DUBUC AND HORACIO PORTA [November 

so that TA=A(A(A, C), C). The unit ri'A:A-+TA is the Fourier-
Gelfand transformation (whose continuity for any X-topological 
algebra follows automatically due to the closed structure of K). The 
principal result in the classical functional representation theory of 
Gelfand means that A « T'A via TJA for any commutative C*-algebra 
with unit A. 

THEOREM 3. There is a K-complete K-category B and a K-faithful 
K-functor L:B—>A' which (strictly) preserves cotensors and K4imits. 
Furthermore 

(a) there is a unique object C£J5 such that C = LC: 
(b) C is a K-codense cogenerator of B, that is, for all B£:B, we have 

B~B(B(B,C),C); 
(c) given any AC:A' such that T'A ^A via TJ'A, there is a unique ob­

ject BÇÎ.B such that LB = A, and moreover, for any other BÇzB, B(B, B') 
~A'(A,LB')viaL. 

THEOREM 4. For an object AC: A' the following are equivalent: 
(a) A = A'(X, C) for some Kelley space X; 
(b) A is a limit in A' of commutative C*-algebras with identity ; 
(c) there is a complete commutative locally m-convex algebra M (cf. 

[7]) with involution x—*x* and a defining family of submultiplicative 
seminorms {p} satisfying p(x-x*)=p(x)2 for each xÇ_M, and such 
that A = KeM. 

The equality KeM = 'A'(Xf C) (M as in Theorem 4(c)) obtained 
above is, of course, an algebraic equality as well as a topological 
equality. However, if the topologies are not i£-ified, the continuity in 
one direction may be lost. Concretely, we have: for each algebra M 
as in Theorem 4(c) there is a Kelley space X and a map S: C(X)—*M 
from the algebra C(X) of complex continuous functions on X, into 
M, such that 5 is an algebraic isomorphism, 5 is continuous for the 
compact-open topology on C(X) and S~1:M-^C(X) is continuous on 
compact sets. 

Theorem 4 is actually a corollary of Theorem 3, which is a purely 
categorical result: the space X associated to an algebra M is con­
structed, and the equality KeM = A'(X, C) is proven by the use of a 
purely categorical machinery. We point out that this space X does 
not coincide in general, even as a set, with other spaces devised for 
the same purpose [6]. 
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