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We continue from [2].

THEOREM. Let P be an open polygonal region in R?, containing the
origin. Set NP = { (\x, M| (x, v) €P} for \>0. Then for

0

f~ 2 amexplilme + ny)]

in L([0, 2w]X [0, 27]), we have
f(xt y) =1im)\—->oo Z(m,n)E)\P Amn€XP ['L(mx +ny)]
almost everywhere.

Surprisingly, this is an easy consequence of Carleson’s theorem [1]
on convergence of Fourier series of one variable.
Proor. It is enough to prove the maximal inequality
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Inequality (1) follows from the special case in which P is a triangle
with a vertex at the origin; for any polygon breaks up into triangles,
and the characteristic function of any triangle is a linear combination
of characteristic functions of triangles with vertices at zero. Conse-
quently, we can assume P has the form P= {(x, NES ] (x, v)-t< a},
where S is a sector of angle <7 emanating from the origin, tER?, and
a&R. Thus (1) is equivalent to

(2)

sup
sER!

S omexplitns + m)l|| sl

(m,n)ES; (m,n) - t<b

Evidently, it suffices to prove (2) for rational ¢ (with C independent
of £), and to do so it is clearly enough to deal with the case t=(p, q)
where p and ¢ are relatively prime integers. Finding integers r and
s for which pr —gs=1, we let the matrix A = ;) ESL(2, Z) act as an
automorphism of the 2-torus. Under the action of 4, (2) becomes
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@ fsw| T oww explitns’ + n'y)] ] H = cllf]l
b (m’ n")ES’ ;m’<b 2
Here,
S' = A7YS), f'(«,¥) = f(A(', ) and 2 aww expli(m’s’ + n'y)]

m’ n’

is the Fourier series of f’. Note that C is unchanged from (2) to (3).
However, (3) follows at once by applying the Carleson-Hunt theorem
of [3] to the function g(-, y’) for each %', where g'(x’, )
~ D et Amrne €xpli(m's’ +n'y")]. Q.E.D.

REMARKS. 1. The same proof applies to all L?, p>1, and also (with
some padding) to polyhedra in # variables.

2. For P a rectangle, a more precise argument, discovered inde-
pendently by P. Sjslin [4], proves convergence of double Fourier
series under minimal growth conditions on f. The best known
hypotheses are f&L(log L)? log log L for P a rectangle, and
fEL(og L)* log log L in general. The relationship of our proof to
Sjolin’s is not clear.

3. N. Tevzadze [5] has shown that for f&L2([0, 2] X [0, 27]) and
for any monotone sequence of rectangles RiCR,CR;C « - - in R?
with sides parallel to the coordinate axes,

fw,9) = lim 22 ama expli(me + ny)]

=% (n,n)ER;

almost everywhere.
Compare with the counterexamples of [2].
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