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Introduction. Let G/K be a compact, irreducible symmetric space
and g=TI+4p the Lie algebra of G. If 7 is a nontrivial real class-one
representation of G on E¥ with 03¢, K-fixed, then the map 7:G/K
—E" given by gK—w(g)e gives an immersion of G/K into E¥. The
purpose of this note is to announce the classification of such immer-
sions with minimal absolute curvature (i.e., are tight) [1], [4].

In a slightly different vein is the problem of finding to what sym-
metric spaces can the work of Frankel [2] be extended. One can
describe Frankel’s method as “take an equivariant immersion of a
homogeneous space and examine the critical manifolds for nondegen-
erate height functions.” The present work shows that to extend
Frankel’s results to spaces which are not R-spaces, the exceptional
groups for instance, will require some modification of method.

The author is indebted to Professor Sigurdur Helgason for his
unfailing encouragement and many useful discussions.

Tightness. If M is a compact, #-dimensional connected C* manifold
and ¢ is a real C* function on M with nondegenerate critical points
then

Bx(¢) = number of critical points of index % of ¢,
Br(M) = minimum { Br(e) ] ¢ nondegenerate/,

B(M) = minimum { i Bi(d) | ¢ nondegenerate} .
k=1

If f: M—RY¥ is an immersion the height functions on M are the
functions

$a(x) = (a, f(x)) where a € RV,

f is tight (k-tight) if B(¢.) =B(M) (Br(ds) =B:(M)) when ¢, is non-
degenerate.
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Symmetric R-spaces. Let & be a real noncompact semisimple Lie
algebra with Z&R such that ad Z is semisimple with eigenvalues
0, 1. There is a Cartan decomposition =g+ with Z&ER. If L is
a Lie group without center and with Lie algebra  and G is the sub-
group of L corresponding to g and if K= { g€G|Ad gZ=Z} then
G/K is symmetric, and is called a symmetric R-space. We have of
course the imbedding

(A) G/K—B by gK—AdgZ.

Second fundamental form. If f: M—N is an immersion of a mani-
fold in a Riemannian manifold and N, = M, ® M- is the decomposition
of the tangent space at x €N under the Riemannian metric then itis
convenient to regard the second fundamental form of the immersion
at x as the bilinear symmetric map a: M, X M,—M;" constructed as
follows: if X, YEM,, and X, ¥ are tangential vector fields with
X.=X,7.=7, then

a(X, Y) = normal component of (VxY), where V is the
Riemannian connection on N.

THEOREM 1. Let G/K be an irreducible compact symmetric space and
g =14p the Lie algebra of G. If w is a real class-one representation of G
on EVN with 05%e, K-fixed, and 7 also denotes the corresponding represen-
tation of g, then for the immersion w:G/K—EY given by gK—w(g)e

a(X, V) =a(X)m(Y)e forX,Y Ep.
The following theorem is an useful improvement of Theorem 4 [4].

THEOREM 2. If f: M—RY is a 0-tight immersion of a compact con-
nected manifold then there is an open set UC M such that the second
SJundamental form is an onto map at each point of U.

REMARK ON PROOF OF THEOREM 2. This theorem represents a
change in the point of view from [4] more than anything else. Using
local coordinates {x;} about the point 7 in M
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9 ] !
o ) , ——) = normal component of
0%/ m \ 0%j/m 0x;0%;

Now if ¢, is a nondegenerate height function with its maximum at
m then its Hessian at m is the matrix

(GG

at m.
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If o is not onto we can find 2& M, such that ¢4, has a nondegen-
erate critical point of index # at m but its absolute maximum else-
where. Then by standard “Morse Theory techniques” we can get a
@, close to ¢, such that ¢, is nondegenerate.

Main result. One can reduce the classification of tight equivariant
immersions of irreducible symmetric spaces to the examination of
irreducible representations and we get

TuEOREM 3. Let G/K be an irreducible compact locally symmetric
space and w an irreducible class-one representation of G giving the im-
mersion w:G/K—EN. Then the following are equivalent:

(1) m is O-tight.

(ii) G/K 1is a symmeiric R-space and w is one of the imbeddings (A).

(iii) 7 s tight (has minimal total curvature).

REMARK ON PROOF. (ii)=>(iii) was proved in [3].

(iii)=(i). See [4] and [5].

(1)=(ii). The central idea in the proof is the following: Let %
=g@EY. Give ¢ the following algebraic structure:

(i) X,Ying:[X, Y]asing.

(i) Xing, uin EN:[X, u]=—[u, X]=7(X)u.

(iii) #, v in EV then [u, v] is in g where

— B([u, 9], X) = (v, #(X)u) for all X in g,

where the inner product on the right is the Euclidean inner product
on E¥ and B is the Killing-form on g. Then we have

LeMmMA 1. Under the assumptions of Theorem 3, Part (i), this algebraic
structure makes  =g-+EY into a Lie algebra.

Details will appear elsewhere.
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