TIGHT EQUIVARIANT IMMERSIONS OF SYMMETRIC SPACES

BY EDMUND KELLY

Communicated by Raoul Bott, July 6, 1970

Introduction. Let G/K be a compact, irreducible symmetric space and $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ the Lie algebra of G. If π is a nontrivial real class-one representation of G on E^N with $0 \neq e$, K-fixed, then the map $\pi: G/K \to E^n$ given by $gK \to \pi(g)e$ gives an immersion of G/K into E^N . The purpose of this note is to announce the classification of such immersions with minimal absolute curvature (i.e., are tight) [1], [4].

In a slightly different vein is the problem of finding to what symmetric spaces can the work of Frankel [2] be extended. One can describe Frankel's method as "take an equivariant immersion of a homogeneous space and examine the critical manifolds for nondegenerate height functions." The present work shows that to extend Frankel's results to spaces which are not R-spaces, the exceptional groups for instance, will require some modification of method.

The author is indebted to Professor Sigurdur Helgason for his unfailing encouragement and many useful discussions.

Tightness. If M is a compact, n-dimensional connected C^{∞} manifold and ϕ is a real C^{∞} function on M with nondegenerate critical points then

$$eta_k(\phi) = ext{number of critical points of index } k ext{ of } \phi,$$
 $eta_k(M) = ext{minimum } \left\{ eta_k(\phi) \mid \phi ext{ nondegenerate} \right\},$
 $eta(M) = ext{minimum } \left\{ \sum_{k=1}^n eta_k(\phi) \mid \phi ext{ nondegenerate} \right\}.$

If $f: M \rightarrow \mathbb{R}^N$ is an immersion the height functions on M are the functions

$$\phi_a(x) = (a, f(x))$$
 where $a \in \mathbb{R}^N$.

f is tight (k-tight) if $\beta(\phi_a) = \beta(M)$ ($\beta_k(\phi_a) = \beta_k(M)$) when ϕ_a is non-degenerate.

AMS 1970 subject classifications. Primary 53C35, 53C40; Secondary 57D70, 53B25.

Key words and phrases. Tight, total absolute curvature symmetric spaces, equivariant immersion, second fundamental form.

Symmetric R-spaces. Let $\mathfrak L$ be a real noncompact semisimple Lie algebra with $Z \in \mathfrak L$ such that ad Z is semisimple with eigenvalues $0, \pm 1$. There is a Cartan decomposition $\mathfrak L = \mathfrak L + \beta$ with $Z \in \beta$. If L is a Lie group without center and with Lie algebra $\mathfrak L$ and G is the subgroup of L corresponding to $\mathfrak L$ and if $K = \{g \in G \mid \mathrm{Ad} \ gZ = Z\}$ then G/K is symmetric, and is called a symmetric R-space. We have of course the imbedding

(A)
$$G/K \to \beta$$
 by $gK \to \operatorname{Ad} gZ$.

Second fundamental form. If $f: M \to N$ is an immersion of a manifold in a Riemannian manifold and $N_x = M_x \oplus M_x^{\perp}$ is the decomposition of the tangent space at $x \in N$ under the Riemannian metric then it is convenient to regard the second fundamental form of the immersion at x as the bilinear symmetric map $\alpha: M_x \times M_x \to M_x^{\perp}$ constructed as follows: if X, $Y \in M_x$, and \tilde{X} , \tilde{Y} are tangential vector fields with $\tilde{X}_x = \tilde{X}$, $\tilde{Y}_x = Y$, then

 $\alpha(X, Y) = \text{normal component of } (\overline{\nabla}_X Y)_x \text{ where } \overline{\nabla} \text{ is the}$

Riemannian connection on N.

THEOREM 1. Let G/K be an irreducible compact symmetric space and $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ the Lie algebra of G. If π is a real class-one representation of G on E^N with $0\neq e$, K-fixed, and π also denotes the corresponding representation of g, then for the immersion $\pi:G/K\to E^N$ given by $gK\to \pi(g)e$

$$\alpha(X, Y) = \pi(X)\pi(Y)e \text{ for } X, Y \in \mathfrak{p}.$$

The following theorem is an useful improvement of Theorem 4 [4].

THEOREM 2. If $f: M \rightarrow \mathbb{R}^N$ is a 0-tight immersion of a compact connected manifold then there is an open set $U \subset M$ such that the second fundamental form is an onto map at each point of U.

REMARK ON PROOF OF THEOREM 2. This theorem represents a change in the point of view from [4] more than anything else. Using local coordinates $\{x_i\}$ about the point m in M

$$\alpha\left(\left(\frac{\partial}{\partial x_i}\right)_m, \left(\frac{\partial}{\partial x_j}\right)_m\right) = \text{normal component of } \frac{\partial^2 f}{\partial x_i \partial x_j} \text{ at } m.$$

Now if ϕ_a is a nondegenerate height function with its maximum at m then its Hessian at m is the matrix

$$\left\lceil \left(a, \alpha \left(\left(\frac{\partial}{\partial x_i} \right)_m, \left(\frac{\partial}{\partial x_i} \right)_m \right) \right) \right\rceil.$$

If α is not onto we can find $z \in M_m$ such that ϕ_{a+z} has a nondegenerate critical point of index n at m but its absolute maximum elsewhere. Then by standard "Morse Theory techniques" we can get a ϕ_v close to ϕ_{a+z} such that ϕ_v is nondegenerate.

Main result. One can reduce the classification of tight equivariant immersions of irreducible symmetric spaces to the examination of irreducible representations and we get

THEOREM 3. Let G/K be an irreducible compact locally symmetric space and π an irreducible class-one representation of G giving the immersion $\pi: G/K \rightarrow E^N$. Then the following are equivalent:

- (i) π is 0-tight.
- (ii) G/K is a symmetric R-space and π is one of the imbeddings (A).
- (iii) π is tight (has minimal total curvature).

Remark on proof. (ii)⇒(iii) was proved in [3].

- $(iii) \Rightarrow (i)$. See [4] and [5].
- (i) \Rightarrow (ii). The central idea in the proof is the following: Let $\mathfrak{L} = \mathfrak{g} \oplus E^N$. Give \mathfrak{L} the following algebraic structure:
 - (i) X, Y in \mathfrak{g} : [X, Y] as in \mathfrak{g} .
 - (ii) $X \text{ in } \mathfrak{g}, u \text{ in } E^{N} : [X, u] = -[u, X] = \pi(X)u.$
 - (iii) $u, v \text{ in } E^N \text{ then } [u, v] \text{ is in } \mathfrak{g} \text{ where }$

$$-B([u,v],X) = (v,\pi(X)u)$$
 for all X in g,

where the inner product on the right is the Euclidean inner product on E^N and B is the Killing-form on \mathfrak{g} . Then we have

LEMMA 1. Under the assumptions of Theorem 3, Part (i), this algebraic structure makes $\mathfrak{L} = \mathfrak{g} + E^N$ into a Lie algebra.

Details will appear elsewhere.

Acknowledgments. These results appeared in the author's doctoral thesis written under Professor S. Helgason at Massachusetts Institute of Technology.

For a time at M.I.T., the author was supported by a Northern Ireland Ministry of Education Postgraduate Studentship.

BIBLIOGRAPHY

- 1. S.-S. Chern and R. K. Lashof, On the total curvature of immersed manifolds. I, Amer. J. Math. 79 (1957), 306-318; II, Michigan Math. J. 5 (1958), 5-12, MR 18, 927; MR 20 #4301.
 - 2. T. T. Frankel, Critical submanifolds of classical groups and Stiefel manifolds,

Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 37–53. MR 33 #4952.

- 3. M. Takeuchi and S. Kobayashi, *Minimal imbeddings of R-spaces*, J. Differential Geometry 2 (1968), 203-215. MR 39 #366.
- 4. N. Kuiper, Immersions with minimal total absolute curvature, Colloq. Géométrie Différentielle Globale (Bruxelles, 1958), Centre Belge Rech. Math., Louvain, 1959, pp. 75–88. MR 23 #A608.
- 5. M. Morse, The existence of polar non-degenerate functions on differentiable manifolds, Ann. of Math. (2) 71 (1960), 352-383. MR 22 #4070.

BOSTON COLLEGE, CHESTNUT HILL, MASSACHUSETTS 02167

University of New Brunswick, Fredericton, New Brunswick