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Introduction. Let G/K be a compact, irreducible symmetric space 
and Q = f+p the Lie algebra of G. If ir is a non trivial real class-one 
representation of G on EN with O^e, infixed, then the map TlG/K 
—*En given by gK—*ir{g)e gives an immersion of G/K into EN. The 
purpose of this note is to announce the classification of such immer­
sions with minimal absolute curvature (i.e., are tight) [ l ] , [4]. 

In a slightly different vein is the problem of finding to what sym­
metric spaces can the work of Frankel [2] be extended. One can 
describe Frankel's method as "take an equivariant immersion of a 
homogeneous space and examine the critical manifolds for nondegen-
erate height functions. " The present work shows that to extend 
Frankel's results to spaces which are not jR-spaces, the exceptional 
groups for instance, will require some modification of method. 

The author is indebted to Professor Sigurdur Helgason for his 
unfailing encouragement and many useful discussions. 

Tightness. If Mi s a compact, ^-dimensional connected C00 manifold 
and <t> is a real C00 function on M with nondegenerate critical points 
then 

@k(<t>) = number of critical points of index k of 0, 

6k(M) = minimum (ft(0) | 0 nondegenerate}, 

jff(Af) = minimum < ]T) |ö&(0) | 0 nondegenerate > . 

If f:M—±RN is an immersion the height functions on M are the 
functions 

0a(#) = (a,f(%)) where a G RN. 

ƒ is tight (Jfe-tight) if P(4>a)=P(M) O5*(0«)=ft(M)) when 0 a is non-
degenerate. 
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Symmetric i^-spaces. Let 8 be a real noncompact semisimple Lie 
algebra with Z £ 8 such that ad Z is semisimple with eigenvalues 
0, ± 1 . There is a Cartan decomposition 8 = g+j3 with Z£/3 . If L is 
a Lie group without center and with Lie algebra £ and G is the sub­
group of L corresponding to Q and if K~ {g£G| Ad gZ = Z} then 
G/K is symmetric, and is called a symmetric i£-space. We have of 
course the imbedding 

(A) G/K-+P by gK-> Ad gZ. 

Second fundamental form. Hf:M—>N is an immersion of a mani­
fold in a Riemannian manifold and Nx = Mx © Mt is the decomposition 
of the tangent space at x £ N under the Riemannian metric then it is 
convenient to regard the second fundamental form of the immersion 
at x as the bilinear symmetric map a : Mx X Mx—^M^ constructed as 
follows: if X, YÇzMx, and X, Y are tangential vector fields with 
1X = X, Yx=Y, then 

a(X, Y) = normal component of (VxY)x where V is the 

Riemannian connection on N. 

THEOREM 1. Let G/K be an irreducible compact symmetric space and 
Q = ï + p the Lie algebra of G. If w is a real class-one representation of G 
on EN with O^e, K-fixed, and IT also denotes the corresponding represen­
tation of g, then for the immersion TT:G/K—>EN given by gK-*ir{g)e 

a(X, Y) = 7r(X)7r(F)e forX, F G p. 

The following theorem is an useful improvement of Theorem 4 [4]. 

THEOREM 2. If f:M—>RN is a Q-tight immersion of a compact con­
nected manifold then there is an open set UCZM such that the second 
fundamental form is an onto map at each point of U. 

REMARK ON PROOF OF THEOREM 2. This theorem represents a 
change in the point of view from [4] more than anything else. Using 
local coordinates {#»•} about the point m in M 

(( d \ ( d \ \ d2f 
a i i j ? / j j _ n o r m a i component of 

\\dXi/m \dXj/m/ dXidxj 
set m. 

Now if <t>a is a nondegenerate height function with its maximum at 
m then its Hessian at m is the matrix 

LV ' V \ dxJm \ dXj/m// J 
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If a is not onto we can find z^Mm such that <j>a+z has a nondegen-
erate critical point of index w a t w but its absolute maximum else­
where. Then by standard "Morse Theory techniques" we can get a 
4>v close to $o-H? such that</>v is nondegenerate. 

Main result. One can reduce the classification of tight equivariant 
immersions of irreducible symmetric spaces to the examination of 
irreducible representations and we get 

THEOREM 3. Let G/K be an irreducible compact locally symmetric 
space and w an irreducible class-one representation of G giving the im­
mersion IT : G/K—±EN. Then the following are equivalent : 

(i) 7T is 0-tight. 
(ii) G/K is a symmetric R-space and T is one of the imbeddings (A). 
(iii) w is tight (has minimal total curvature). 

REMARK ON PROOF. (ii)==>(iii) was proved in [3]. 
(iii)=>(i). See [4] and [S]. 
(i)=>(ii). The central idea in the proof is the following: Let 8 

= §@EN. Give 8 the following algebraic structure: 
(i) X, Y'mi:[X, F] as ing. 
(ii) X in g, u in EN: [X, u]= - [u, X] = ir(X)u. 
(iii) u, v in EN then [u, v] is in g where 

- B([u, v],X) = (», 7r(X)u) for all X in g, 

where the inner product on the right is the Euclidean inner product 
on EN and B is the Killing-form on g. Then we have 

LEMMA 1. Under the assumptions of Theorem 3, Part (i), this algebraic 
structure makes 2 = ö +EN into a Lie algebra. 

Details will appear elsewhere. 
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