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ABSTRACT. Fixed point theorems are used to prove existence 
and uniqueness of the C1 solution of the initial-value problem for a 
functional-differential equation of neutral type. 

1. Introduction. In this paper we consider the initial-value problem 
(IVP) for the functional-differential equation of neutral type 

(1) %'(t) = ƒ(*, %{l), %(g{t, *(/))), %'(h(t, *(/)))), 

with the initial condition 

(2a) x(0) = xo. 

Here f(t, x, y, 2), g(t, x) and h(t, x) are continuous functions with 
g(0, xo) =h(0, Xo) = 0 . We assume further that the algebraic equation 
z — /(O, Xo, Xo, z) has a real root zQ, and we require that 

(2b) x'(0) = s0. 

Existence theorems for IVP's for equation (1) have been proved by 
R. D. Driver [ l ] for the case where h(t, x) < / , and recently by V. P. 
Skripnik [2] under the hypotheses that ƒ is sufficiently small, h(ty x) 
is independent of x, and ƒ is linear in the argument x'(h(t)). Our exis­
tence theorem requires none of these hypotheses. Under some addi­
tional conditions we obtain a local uniqueness theorem, and obtain as 
a corollary a result on existence of continuous solutions of certain 
nonlinear functional equations. 

2. Existence. Let a>0 and let / = [ — a, a]. We shall make the 
following assumptions concerning the IVP (l)-(2a)~(2b) : 

(i) ƒ(t, x, y, z) is continuous in some region in i?4 containing 

P = {(t,x,y,z):\t\ g a , | * - * o | ^ A | y - * o | ^ f t | * | ^M\ 

where a, j3 and M > | z 0 | are positive constants. We assume that 
a^|3/Af and that sup(i>a:,Vf2)Gp|/(^ x, y, z)\ ^M. 
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(ii) g(t, x) and h(t, x) are continuous in the projection R of P into 
the (t, x) space; g and h both map R into / , with g(0, x0) = h(Q, x0) = 0, 
and h(t, x) satisfies the Lipschitz condition 

| h(th xi) — h(t2, x2)\ â fa J h — h I + £21 *i ~ «21 

for all (tu Xi)t (t2, x2)ÇzR> where fa and fa are nonnegative constants 
with fa+faM^l. 

(iii) The function ƒ(/, x, y, z) satisfies the Lipschitz condition 

I ƒ(/, x, y, zi) - f(t, x, y, z2) \ Û Lz\ zx - z2 \ 

for all (t, x, y, 21), (t, x, y} z2) £ P , where Lz< 1. 
The Schauder fixed-point theorem yields 

THEOREM 1. L^der the hypotheses (i)-(iii), the IVP ( l)-(2a)-(2b) 
has at least one solution which is continuously differentiable on J. 

3. Uniqueness. In case h(t, x) is independent of x, we obtain the 
following theorem: 

THEOREM 2. In addition to the hypotheses of Theorem 1, suppose that: 
(iv) h(t, x) is independent of x; 
(v) ƒ and g satisfy the Lipschitz conditions : 

| f(t, xu yi, zi) - ƒ(*, «2, ?2, 02) | 

S L{\XI~ x2\ + \ yi — y2\ } + Le\ Z! — z2\ 

where L and Lz are nonnegative constants 1 with Lz < 1 ; 

I g(t, *i) - #(*, x2) | ^ £„ | »i - x21 

w7& 1^ a nonnegative constant, uniformly in their respective domains. 
Then there exists y0, (Xyo^ct, such that there is a unique continu­

ously differentiable solution of the IVP (l)-(2a)-(2b) on the interval 
[-To, To]. 

The proof follows from the contraction mapping principle. 

4. Nonlinear functional equations. As a corollary to our existence 
and uniqueness results, we note that if f(t, x, y, z) is independent of x 
and y, and h(t, x) is independent of xf the problem (l)~(2b) has the 
form of the functional equation 

(3) z(t) = ƒ(*,*(*(*))), 

(4) s(0) = s0, 

where ZQ is a root of 2=/(0 , z). Theorems 1 and 2 then yield at once: 
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THEOREM 3. Let f if, z) be continuous in some region in R2 containing 
Pi— {t:\t\ SOL, \Z\SM\, where a and M are positive constants such 
that supc^epj f { t , z)\ <M, and M>\z<\ where Zo is a real root of 
z=f(0, z). Let ƒ satisfy the Lipschitz condition \f(t, Zi)—f(t, z2)\ 
g L 2 | z i ~ 2 2 | for all (t, Si), (t, 22)GPi, withLz<\. Let h(t) be continuous 

for \t\ Sa, A(0)=0, and\h(ti)-h(h)\ S\k-k\ fork, hE[-<x, a]. 
Then the problem (3)-(4) has at least one continuous solution on 

[—a, a], and this is the unique continuous solution on this interval if 
a is sufficiently small. 
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