EXISTENCE AND UNIQUENESS FOR NONLINEAR NEUTRAL-DIFFERENTIAL EQUATIONS¹ BY L. J. GRIMM Communicated by Wolfgang Wasow, August 14, 1970 ABSTRACT. Fixed point theorems are used to prove existence and uniqueness of the C¹ solution of the initial-value problem for a functional-differential equation of neutral type. 1. **Introduction.** In this paper we consider the initial-value problem (IVP) for the functional-differential equation of neutral type (1) $$x'(t) = f(t, x(t), x(g(t, x(t))), x'(h(t, x(t))),$$ with the initial condition $$(2a) x(0) = x_0.$$ Here f(t, x, y, z), g(t, x) and h(t, x) are continuous functions with $g(0, x_0) = h(0, x_0) = 0$. We assume further that the algebraic equation $z = f(0, x_0, x_0, z)$ has a real root z_0 , and we require that $$(2b) x'(0) = z_0.$$ Existence theorems for IVP's for equation (1) have been proved by R. D. Driver [1] for the case where h(t, x) < t, and recently by V. P. Skripnik [2] under the hypotheses that f is sufficiently small, h(t, x) is independent of x, and f is linear in the argument x'(h(t)). Our existence theorem requires none of these hypotheses. Under some additional conditions we obtain a local uniqueness theorem, and obtain as a corollary a result on existence of continuous solutions of certain nonlinear functional equations. - 2. Existence. Let $\alpha > 0$ and let $J = [-\alpha, \alpha]$. We shall make the following assumptions concerning the IVP (1)-(2a)-(2b): - (i) f(t, x, y, z) is continuous in some region in \mathbb{R}^4 containing $$P = \{(t, x, y, z) : |t| \leq \alpha, |x - x_0| \leq \beta, |y - x_0| \leq \beta, |z| \leq M\}$$ where α , β and $M > |z_0|$ are positive constants. We assume that $\alpha \leq \beta/M$ and that $\sup_{(t,x,y,z)\in P} |f(t,x,y,z)| \leq M$. AMS 1970 subject classifications. Primary 34K05; Secondary 34K05. Key words and phrases. Neutral-differential equations, functional differential equations. ¹ Research supported by NSF Grant GP 20194. (ii) g(t, x) and h(t, x) are continuous in the projection \tilde{R} of P into the (t, x) space; g and h both map \tilde{R} into J, with $g(0, x_0) = h(0, x_0) = 0$, and h(t, x) satisfies the Lipschitz condition $$|h(t_1, x_1) - h(t_2, x_2)| \le k_1 |t_1 - t_2| + k_2 |x_1 - x_2|$$ for all (t_1, x_1) , $(t_2, x_2) \in R$, where k_1 and k_2 are nonnegative constants with $k_1 + k_2 M \le 1$. (iii) The function f(t, x, y, z) satisfies the Lipschitz condition $$|f(t, x, y, z_1) - f(t, x, y, z_2)| \le L_z |z_1 - z_2|$$ for all (t, x, y, z_1) , $(t, x, y, z_2) \in P$, where $L_z < 1$. The Schauder fixed-point theorem yields THEOREM 1. Under the hypotheses (i)-(iii), the IVP (1)-(2a)-(2b) has at least one solution which is continuously differentiable on J. 3. Uniqueness. In case h(t, x) is independent of x, we obtain the following theorem: Theorem 2. In addition to the hypotheses of Theorem 1, suppose that: - (iv) h(t, x) is independent of x; - (v) f and g satisfy the Lipschitz conditions: $$| f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2) |$$ $$\leq L \{ | x_1 - x_2| + | y_1 - y_2| \} + L_z | z_1 - z_2|$$ where L and L_z are nonnegative constants, with $L_z < 1$; $$|g(t, x_1) - g(t, x_2)| \le L_g |x_1 - x_2|$$ with L_g a nonnegative constant, uniformly in their respective domains. Then there exists γ_0 , $0 < \gamma_0 \le \alpha$, such that there is a unique continuously differentiable solution of the IVP (1)-(2a)-(2b) on the interval $[-\gamma_0, \gamma_0]$. The proof follows from the contraction mapping principle. 4. Nonlinear functional equations. As a corollary to our existence and uniqueness results, we note that if f(t, x, y, z) is independent of x and y, and h(t, x) is independent of x, the problem (1)-(2b) has the form of the functional equation $$(3) z(t) = f(t, z(h(t))),$$ $$(4) z(0) = z_0,$$ where z_0 is a root of z = f(0, z). Theorems 1 and 2 then yield at once: Theorem 3. Let f(t, z) be continuous in some region in R^2 containing $P_1 = \{t: |t| \le \alpha, |z| \le M\}$, where α and M are positive constants such that $\sup_{(t,z)\in P_1} |f(t,z)| < M$, and $M > |z_0|$ where z_0 is a real root of z = f(0, z). Let f satisfy the Lipschitz condition $|f(t, z_1) - f(t, z_2)| \le L_z |z_1 - z_2|$ for all (t, z_1) , $(t, z_2) \in P_1$, with $L_z < 1$. Let h(t) be continuous for $|t| \le \alpha$, h(0) = 0, and $|h(t_1) - h(t_2)| \le |t_1 - t_2|$ for t_1 , $t_2 \in [-\alpha, \alpha]$. Then the problem (3)-(4) has at least one continuous solution on $[-\alpha, \alpha]$, and this is the unique continuous solution on this interval if α is sufficiently small. ## REFERENCES - 1. R. D. Driver, A functional-differential system of neutral type arising in a two-body problem of classical electrodynamics, Internat. Sympos. Nonlinear Differential Equations and Nonlinear Mechanics, New York, Academic Press, 1963, pp. 474–484. MR 26 #4008. - 2. V. P. Skripnik, On some systems with deviating argument of neutral type, Izv. Vysš. Učebn. Zaved. Matematika 1968, no. 8 (75), 80-87. (Russian) University of Missouri-Rolla, Rolla, Missouri 65401