ABBREVIATING PROOFS BY ADDING NEW AXIOMS

BY ANDRZEJ EHRENFEUCHT AND JAN MYCIELSKI

Communicated by Dana Scott, July 9, 1970

The purpose of this note is to state precisely and prove the following informal statement: If T is a theory and α is a new axiom such that $T+ \operatorname{non} \alpha$ is an undecidable theory then some theorems of T have much shorter proofs in $T+\alpha$ than in T. Notice that if T is an essentially undecidable theory, like e.g. arithmetic, this conclusion will be true provided α is a sentence which is not a theorem of T, since then $T+\operatorname{non} \alpha$ is undecidable.

Let T be a formalized theory which among its logical functors has the negation \neg , the implication \rightarrow , and the alternative \vee . Let σ and τ be variables ranging over sentences formulated in the language of T and α one fixed such sentence. We denote by $\lceil \sigma \rceil$ the Gödel number of σ , although here $\lceil \rceil$ is just any one-to-one map of the set of sentences into the set of positive integers. For any theorem τ of T let $W(\tau)$ be also a positive integer measuring in some way the length of the shortest proof of τ in T. But all we need about $\lceil \rceil$ and W are the following conditions:

- (i) The set $\{2^n(2^{\lceil \tau^{\rceil}}+1): \tau \text{ is valid in } T \text{ and } W(\tau) \leq n\}$ is recursive.
- (ii) There are recursive functions g and h such that for every σ

$$W(\alpha \to (\alpha \lor \sigma)) \leq g(\lceil \sigma \rceil), \qquad h(\lceil \sigma \rceil) = \lceil \alpha \lor \sigma \rceil.$$

The meaning of (i) is that there is an algorithm to check if τ has a proof of length $\leq n$. This stipulation entails that the set of Gödel numbers of the theorems of T is recursively enumerable. It is clear that reasonable $\lceil \rceil$ and W satisfy (i) and (ii).

LEMMA. If the theory $T+ \neg \alpha$ is undecidable, i.e. the set $\{ \neg \sigma : \alpha \lor \sigma \text{ is valid in } T \}$ is not recursive, then there is no recursive function f such that

(1)
$$W(\tau) \leq f(W(\alpha \to \tau))$$

for every τ valid in T.

PROOF. Suppose to the contrary that (1) holds. We can assume without loss of generality that f is nondecreasing. Then by (1) and (ii) we get

AMS 1970 subject classifications. Primary 02G05, 02F27.

Key words and phrases. Proofs, axioms, length, recursive sets.

$$W(\alpha \vee \sigma) \leq f(W(\alpha \rightarrow (\alpha \vee \sigma))) \leq f(g(\lceil \sigma \rceil)).$$

Hence if we want to check for a given positive integer k if $k \in \{ \lceil \sigma \rceil : \alpha \lor \sigma \text{ is valid in } T \}$ it is enough to evaluate f(g(k)), h(k) and check if

$$2^{f(g(k))}(2h(k)+1) \in \{2^n(2\lceil \tau\rceil + 1) : \tau \text{ is valid in } T \text{ and } W(\tau) \leq n\}.$$

By (i) this constitutes a decision procedure, contrary to the supposition of the Lemma. Q.E.D.

To apply this Lemma to the theory $T+\alpha$ we must assume that the function $W^*(\tau)$ measuring the length of the shortest proof of τ in $T+\alpha$ is such that

(iii) There exists a recursive function r such that

$$W^*(\tau) \leq r(W(\alpha \to \tau))$$

for every τ valid in T.

This again is true for any α and most reasonable W and W^* we can think of.

Theorem. If the theory $T+ \bigcap \alpha$ is undecidable then there is no recursive function s such that

$$(2) W(\tau) \le s(W^*(\tau))$$

for every theorem τ of T.

PROOF. Suppose to the contrary that (2) holds. We can assume without loss of generality that s is nondecreasing. Then by (2) and (iii) we get

$$W(\tau) \leq s(r(W(\alpha \to \tau))),$$

which contradicts our Lemma. Q.E.D.

NOTE ADDED ON OCTOBER 25, 1970. See M. A. Arbib, *Theories of abstract automata*, Prentice-Hall, Inc. 1969, Chapter 7.4, pp. 261–267, for related results and references.

University of Southern California, Los Angeles, California 90007

University of Colorado, Boulder, Colorado 80302