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The purpose of this note is to state precisely and prove the follow­
ing informal statement: If T is a theory and a is a new axiom such 
that r + n o n a is an undecidable theory then some theorems of T 
have much shorter proofs in T+a than in T. Notice that if T is an 
essentially undecidable theory, like e.g. arithmetic, this conclusion 
will be true provided a is a sentence which is not a theorem of T, 
since then T + n o n a is undecidable. 

Let T be a formalized theory which among its logical functors has 
the negation ], the implication —», and the alternative V . Let <r and 
r be variables ranging over sentences formulated in the language of T 
and a one fixed such sentence. We denote by V the Gödel number of 
<r, although here r 1 is just any one-to-one map of the set of sen­
tences into the set of positive integers. For any theorem r of T let 
W(T) be also a positive integer measuring in some way the length of 
the shortest proof of r in T. But all we need about r "I and W are the 
following conditions: 

(i) The set {2n(2 rr7 + 1 ) : r is valid in T and W(T) ^n} is recursive. 
(ii) There are recursive functions g and h such that for every <r 

W(a -> (a V a)) S g ( V ) , i ( V ) = r « V ^ . 

The meaning of (i) is that there is an algorithm to check if r has 
a proof of length Sn. This stipulation entails that the set of Gödel 
numbers of the theorems of T is recursively enumerable. I t is clear 
that reasonable r 1 and W satisfy (i) and (ii). 

LEMMA. If the theory T+ \otis undecidable^ i.e. the set { V : a\/<r is 
valid in T} is not recursive, then there is no recursive function f such 
that 

(1) W(T) ^f(W{a-*r)) 

for every r valid in T. 

PROOF. Suppose to the contrary that (1) holds. We can assume 
without loss of generality that ƒ is nondecreasing. Then by (1) and 
(ii) we get 
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W(a V <r) â f(W(a - > ( « V er))) S f(g( V ) ) . 

Hence if we want to check for a given positive integer k if k £ { V : 
aVtf" is valid in r } it is enough to evaluate ƒ(g(k)), h(k) and check if 

y<**»(2A(*) + 1) G{2w(2rTi + l ) : r is valid in T and W(T) ^ «} . 

By (i) this constitutes a decision procedure, contrary to the supposi­
tion of the Lemma. Q.E.D. 

To apply this Lemma to the theory T+a we must assume that the 
function W*(T) measuring the length of the shortest proof of r in 
T+a is such that 

(iii) There exists a recursive function r such that 

W*(T) ^ r(W(a -> r)) 

for every r valid in Z1. 
This again is true for any a and most reasonable W and W* we can 

think of. 

THEOREM. If the theory T+ \a is undecidable then there is no recur­
sive function s such that 

(2) W(T) S S(W*(J)) 

for every theorem r of T. 

PROOF. Suppose to the contrary that (2) holds. We can assume 
without loss of generality that s is nondecreasing. Then by (2) and 
(iii) we get 

W(T) ^ s(r(W(a-+T))), 

which contradicts our Lemma. Q.E.D. 
N O T E ADDED ON OCTOBER 25, 1970. See M. A. Arbib, Theories of 

abstract automata, Prentice-Hall, Inc. 1969, Chapter 7.4, pp. 261— 
267, for related results and references. 
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