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ABSTRACT. The existence and uniqueness of physical ground 
states is proved for various interactions in quantum field theory 
using some infinite dimensional extensions of the Perron-Frobenius 
theorem. 

Let Ct be a von Neumann algebra with a finite regular trace. A 
bounded linear operator A from L2($) to L2(Ct) is of nonnegative type 
if A takes nonnegative operators to nonnegative operators. The 
classical theorem of Perron and Frobenius [2] asserts that if (£ is 
finite dimensional (in which case L2(a) = ($) and commutative and if 
A is of nonnegative type and has spectral radius r then r is an eigen­
value of A and has a corresponding eigenvector which is nonnegative. 
If, in addition, A leaves no proper ideals of Q, invariant then r is an 
algebraically simple eigenvalue. 

In this note we remove the assumptions that Œ is finite dimensional 
and commutative. Denoting by La and Ra the bounded operators of 
left and right multiplication on L2(Q) by an element a in the von 
Neumann algebra (3, we put, for any projection e in ($, Pe = LeRe. Pe is a 
projection on L2(Ct). Its range will be called a Pierce subspace. We 
consider a bounded Hermitian operator A of nonnegative type on 
L 2 (a ) . We shall show that if, for some p>2, A is bounded from 
L2(d) to Lp(&) then r = ||^4|| is an eigenvalue of A and A has a non-
negative eigenvector with eigenvalue r. If, in addition, A leaves in­
variant no proper Pierce subspace then r has multiplicity one. 

This work is motivated by our attempts to prove the existence and 
uniqueness of physical ground states in various models in quantum 
field theory. Among new results following from these methods is 
existence of the physical one particle rest state for some interactions 
involving Bosons, where Ct is commutative, and uniqueness of the 
physical vacuum for interactions involving Fermions, where Q is a 
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Clifford algebra. Various known results concerning the existence of 
the physical vacuum also follow from these methods. 

For the relevant noncommutative integration theory see [ó], [7], 
[8]. 

THEOREM 1 (EXISTENCE). Let (fi, jit) be a finite measure space. Let A 
be a bounded Hermitian operator on L2(fl) of nonnegative type. Put 
r = \\A\\. If f or some real number p>2 there is a real constant M such 
that WAXI/WLP^MWXPWL* then r is an eigenvalue of A with finite multi­
plicity. A has nonnegative eigenvectors with eigenvalue r. 

THEOREM 2 (EXISTENCE). Let & be a von Neumann algebra with a 
finite regular trace. Assume that a contains a directed system of finite 
dimensional * subalgebras with union dense in L2((&). Let A be a 
bounded Hermitian operator on L2(d) of nonnegative type. Put r == ||̂ 41[. 
If for some real number p>2 there is a real constant M such that 

r is an eigenvalue of A. A has nonnegative eigen­
vectors with eigenvalue r. 

To prove Theorem 1 let a = {E\f • • • , En} be a partition of fl into 
measurable sets of positive measure. Let Pa be the corresponding con­
ditional expectation projection on L2(0). Then PaAPa is of finite rank 
and of nonnegative type and hence has a nonnegative unit eigenvec­
t o r ^ of eigenvalue ||P«-4Pa | |. One shows that weak lim« \f/a is not zero 
when the collection of partitions is directed by refinement. 

THEOREM 3 (UNIQUENESS OF MAXIMUM EIGENVECTOR). Let d be a 

von Neumann algebra with a finite regular trace. Let A be a bounded 
Hermitian operator on L2(d) of nonnegative type. Assume that r = ||^4|| 
is an eigenvalue of A. If A leaves invariant no proper Pierce subspace of 
L2{6) then r has multiplicity one. 

REMARK. The algebraic hypothesis in this theorem, that A leave 
invariant no proper Pierce subspace, is equivalent to an analytic con­
dition, ergodicity [4], which is a notion that can be formulated in a 
much more general context [5] than that with which we are dealing. 
The virtue of this algebraic hypothesis lies in the fact that it is very 
easy to verify it for a large class of operators that arise in quantum 
field theory. The first assertion in the following perturbation theorem 
illustrates this. 

THEOREM 4. Let d be a von Neumann algebra with a finite regular 
trace. Let HQ be a self adjoint operator on L2(d) such that H0^0. Assume 
that the null space of H0 is spanned by the identity element of Q, and let a 
be a Hermitian element in (X. Put B~La+Ra and H = H0+B. If t 
> 0 then exp(—tH) leaves no proper Pierce subspace invariant. If 
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exp( — tHo) is of nonnegative type f or all t>0 then so is exp(-tH). If 
exp(-tHo) is bounded from L2(d) to Lp(d) for some p>2 and some 
t>0 then exp(-tH) is bounded from L2(&) to Lp(®) for some p>2 and 
some t>0. 

We prove the first assertion of the theorem. Suppose e is a nonzero 
projection in Q, such that Pe commutes with exp( — tH) for some / > 0 . 
Since H is self ad joint, Pe commutes with exp(-tH) for all t^O. Now 
1 is in the domain of H. Hence both sides of the equation 

P e e x p ( - / i 7 ) l = exp(-/27)P4 

are differentiable a t 2 = 0. Consequently e~Pel is in the domain of H 
and 

Pe(Hl) = He. 

Now PeHl=Pe(2a)=2eae and He = H0e+ae+ea. Thus 2eae = H0e 
+ae+ea. Apply Pe to obtain Pe(H0e) = 0 . Taking the inner product 
with 1 we get 0 = (PeHoe, 1) = (H0e, e). Since HQ^0 it follows that 
Hoe — 0. Hence e = 1 and Pe is the identity operator. 

REMARK. The conclusions of Theorem 4 remain true under a 
considerable relaxation of the requirement that a be in Ot. Specifically, 
noncommutative extensions of the Stein interpolation theorem com­
bined with techniques of Segal [ l0] , [ l l ] allow one to extend 
Theorem 4 to a large class of perturbations of the form B~La+Ra 

where a is unbounded. But the part of the proof given above remains 
unchanged if H0+B is self ad joint on its domain (and bounded 
below). 

APPLICATIONS. Let 3C be a complex Hilbert space and let J be a 
conjugation on 3C. Denote by An(3C) the space of skew symmetric n 
tensors over 3C with A°(3C) = complex numbers. PutA(5C) = ]C»°°=*(An(3C) 
and xf/o— 1 in A°(3C) CA(5C). For each x in 3C there is a unique bounded 
operator Cx on A(3C) such that Cxu = (n+\)ll2x/\u when w£Aw(3C). 
Let AX = C* and put Lx=Cx+Ajx. Let 6 be the von Neumann 
algebra generated by the operators {Lx:xQ.SC}. Then 6 is a factor of 
type Hi and trace (a) = (a\po, ^o) is a finite regular trace on 6. 6 is the 
weakly closed Clifford algebra over 5C relative to the conjugation / . 
\po is a separating cyclic vector for 6 and the map a—*aypo extends to a 
unitary map of L2((B) onto A(3C), cf. [9]. Let D be a selfadjoint opera­
tor on 5C such that D^ml for some constant m>0. The one parame­
ter unitary group exp(itD) extends to a one parameter unitary 
group on A(3C) whose infinitesimal generator we denote by H\. In 
view of the isomorphism of L2(C) with A(3C) we may regard Hi as an 
operator on L2(6). If D commutes with J then i^i^O, exp( — tHi) is 
of nonnegative type for each £>0, and for each tf>0 there is a p>2 
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such that exp( — tHi) is bounded from L2((3) to Z>(6). The null space 
of Hi is spanned by the identity of 6. Thus if a is in 6 and H — Hi 
+La+Ra then, by Theorems 2, 3, and 4, H has a simple eigenvalue 
at the lower end of its spectrum. 

I t is remarkable that the total Hamiltonian for a Fermion field 
interacting with an external scalar field via a cutoff Yukawa inter­
action has the form H=Hi+La+Ra described above when the con­
jugation J on the one particle nucleon-anti-nucleon space 3C is 
suitably chosen. A suitable choice for J in four space-time dimen­
sions is / = TCP restricted to 5C where T is Wigner time reversal, C is 
charge conjugation and P is intrinsic parity (not space reflection). 
See [l , pp. 109, 112] for a discussion of intrinsic parity. Thus the 
existence and uniqueness of the physical vacuum for this model fol­
lows from the methods described in this note. We mention also that 
the terms La+Ra in the total Hamiltonian correspond to the pair 
creation and annihilation terms of the interaction Hamiltonian and 
that Hi includes the free Hamiltonian plus the other terms of the 
interaction Hamiltonian plus a mass renormalization term. 

As a second application we derive the existence of physical one 
particle rest states for a massive polaron model from Theorem 1. The 
uniqueness follows from the mentioned extension of Theorem 4. We 
let 3C = reaLL2(i£n). Let h be a fixed real continuous function in 
L2(Rn). For each x in Rn let Fx(<p) — (<p * h)(x) where * denotes convo­
lution and <p is in 3C. Then Fx is a real continuous linear functional on 
X for each x. Let (Œ, v) be a probability space associated with the 
isotropic normal distribution on 3C with variance parameter one. 
Then, for each x in Rn, Fx corresponds to a measurable function 
<Pk(x)(') o n O* Multiplication by <Ph(x)(-) on L2(Q) may be regarded as 
a Boson field at time zero with cutoff function h. The Hubert space for 
a massive polaron at rest may be taken to be L2(0). The total Hamil­
tonian with cutoff h may then be described thus: Let Tx denote space 
translation in 5C, (Tx\[/)(y) =\f/(y—x). Then Tx is an orthogonal trans­
formation of 3C and therefore induces a unitary transformation tx of 
L2(Q) which can profitably be thought of as being induced by a 
measure preserving transformation of £2. The map x-^tx is a strongly 
continuous unitary representation of the additive group of Rn. We 
denote the infinitesimal generators relative to some O.N. basis of Rn 

by Pu - • • , Pn. Thus Tx = exp(iY%~iXjPj)- Let E(p),p in Rn, be the 
kinetic energy function of the nucléon. The total Hamiltonian is 
then H~E((Pu • • • , Pn)) + (HQ)Boson+multiplication by ^ ( 0 ) . I t is 
well understood [4], [ l0] , [ l l ] why the contribution to exp( — tH) 
from the last two terms yields an operator of nonnegative type on 
L2(Q). We limit our discussion to exp( -*£(P i , • • • , Pw)). If 
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exp(—tE(p)) = I gt(x) exp(ix-p) dx, 
J on 

then 

exp(-/E((Px, • • • , Pn))) = I gt(x) exp ( i X XJPJ) dx-

f~dx. 

Now Tx is of nonnegative type since it is (essentially) induced by a 
measure preserving transformation of fl. Hence if gt(x)^0 for all 
t>0 and all x then exp( — tE((Ph • • • , Pn))) will be of nonnegative 
type. Thus a sufficient condition for the nonnegativity of exp( — tH) 
is that exp( — tE(p)) be a positive definite function of p for all / > 0 . 
This condition is satisfied in both the Newtonian case where E(p) 
= \p\ 2/2m, and the relativistic case where E(p) = (m 2+ \p\ 2)1 / 2 . The 
requirement in Theorem 1 that exp( — tH) be bounded from L2 to Lp 

for some p > 2 is easily established using known techniques. 
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