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The main result announced here is a negative solution of the 
Kakutani-Doob problem [3 ] on measurability of stochastic processes, 
assuming the continuum hypothesis. Thus the positive solution pro­
posed earlier by M. Mahowald [ó] is incorrect (the last step in the 
argument applies the Fubini theorem to sets in a product space which 
need not be measurable). 

Complete proofs will appear in the Proceedings of the Sixth 
Berkeley Symposium on Mathematical Statistics and Probability. 
Preprints are available from the author. 

The problem can be formulated as follows. Let 

x = (**(«), 0 S t ^ l , w G Q ) 

be a real-valued stochastic process on ƒ = [0, 1 ] over some probability 
space (£2, P ) . Then by a theorem of Kolmogorov, x has a probability 
distribution Px on the space R1 of all functions from I into the real 
line -R. We embed R in a compact space, such as its one-point compac-
tification R. Now R1 is also a compact Hausdorff space and Px defines 
a Baire measure on R1. We take the unique regular Borel extension 
K of Px (cf. Kakutani [S], E. Nelson [7]). 

Let E be the evaluation map (t, ƒ)—»ƒ(£) from IXR1 into R, and let 
X be Lebesgue measure on I. Then the process E(tf ƒ) has the same 
probability laws as the original x, i.e. PE^PX, where PE is defined 
from Px as Px from P . 

Thus we have a "canonical" representative from each class of 
processes x with a given Px. In general, E need not be measurable for 
\XJPX [5], The Kakutani-Doob problem asks: if x is XXP-measur-
able, then is E measurable for XXP*? 

A negative answer, assuming the continuum hypothesis, can be 
given for certain processes of the form 
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where the yn and zn are independent random variables, and ]C?»(0 
and ]>ÎX(<o) do not converge in general. 

Perhaps the most interesting and important example of such a 
process is as follows. We replace (I, X) by an equivalent probability 
space (H, /x), where H is a separable, infinite-dimensional real Hilbert 
space and /x is a suitable probability measure on H. We consider the 
standard Gaussian linear stochastic process L on H. L is a linear 
isometry from H into Gaussian random variables with usual inner 
product. (L is the "white noise" or "isonormal" process.) 

Specifically, let H be the usual space h of square-summable se­
quences y= {yn}n=i- Let ix be the probability on H such that the yn 

are independent Gaussian with Eyn~0 and Eyl = n~zl2. (Here it is 
important that ^n~ZJ2< oo and X^~3/4™ °° î there are many other 
possibilities for >t.) We have 

L(y)(a>) s ]£?»(?„(«) 

where the Gn are independent Gaussian random variables over some 
probability space (£2, P) with EG« = 0, EG^ = 1. Clearly L is (jointly) 
measurable on HX&. Here is the main result: 

PROPOSITION 1. Assuming the continuum hypothesisy the set of 
\-measurable functions from H into R has PL-inner measure 0. Hence 
E is not tiYJPL-measurable on HXJiH. 

Most of the proof is in the following: 

LEMMA. Assuming the continuum hypothesis} suppose A is a measur­
able subset of ft with P(A)>0. Then there is a set S(ZH with outer mea­
sure ix* (S) = 1 such that for every finite set FQS and any nonempty open 
sets U/C.R, 

P{a> G A:L(f)(œ) G U/far allfEF] > 0. 

The construction of S by transfinite induction follows a method 
suggested by Sierpinski's proof [s] that there is a set in the plane 
which intersects every line in at most two points yet is not Lebesgue 
measurable. 

Bledsoe and Morse [2] extend a usual product measure vXp to a 
measure v X M P by setting (v XMP) (B) = 0 if and only if 

XB(X, y) dv(%) dp(y) = J J XB(X, y) dp(y) dv(x) = 0. 

This gives Sierpinski's set measure 0 in the plane. But in our case, E 
is not measurable even for IXXMPL. 

ƒƒ 

file:///-measurable


i97i] ON MEASURABILITY OVER PRODUCT SPACES 273 

To prove Proposition 1 given the Lemma, suppose C is a compact 
set in "RH with PL(C)>0. We take a Baire set C O C with the same 
measure. Then Ci is equivalent to a set A Qti. Applying the Lemma 
to A shows that all functions from S into R extend to functions in C, 
so that not all functions in C can be measurable. Proposition 1 follows 
directly. 

The other results to be presented now have proofs independent of 
Proposition 1 and its proof. They do, however, help confirm that 
product spaces such as W are rather pathological for measure theory. 
In what follows, convergence of Borel probability measures Pn—*Po 
on a topological space means the usual (weak, weak-star, narrow) 
convergence: f f dPn-^ff dPo for every bounded continuous real / . 

PROPOSITION 2. There exist processes x(n) such that each PX(n) is 
concentrated in a finite set of functions, so that E is\XPX(nyineasurable 
for all n, and such that Px(n)—>Qfor some Q, but E is not\XQ-tneasur-
able. 

To prove Proposition 2, we can take Q — Pv where the v(t) are inde­
pendent for different tEI and P(v(t) =0) =P(v(t) = 1) = 1/2. 

PROPOSITION 3. There are continuous functions fn from I into I1 with 
product topology such that fn(x)(y)-^f(x)(y) for all x and y but f is not 
measurable from (I, X) into I1 with its Borel cr-algebra. 

PROOF. Let fn(x)(y) =max(0, l—n\x—y\). Then ƒ(#)(:y) = l if 
x = y and 0 otherwise, so / i s not measurable. Q.E.D. 

A topological space (5, 3) is called normal if for any disjoint closed 
sets F, G there are disjoint open sets U, F with FQ U, G C.V. (5, 3) is 
called perfectly normal iff it is normal and every open set is a countable 
union of closed sets. 

PROPOSITION 4. If fn are measurable functions from a measurable 
space (X, S) into a perfectly normal topological space (5, 3) such that 
fn(x)—*f(x)for allxÇzXy then f is measurable. 

Propositions 3 and 4 correct a result of Fernique [4, Théorème I, 
4.2(a) ]. Fernique shows that many useful spaces in addition to metric 
spaces are perfectly normal [4, Théorème I, 6.1, p. 19]. Such spaces 
include the "Lusin spaces" which are 1-1 continuous images of com­
plete separable metric spaces and are regular topological spaces. 

But even Lusin spaces turn out not to have all the good properties 
of metric spaces, such as Skorohod's theorem [9, Theorem 3.1.1, 
p. 281] that if probabilities converge, Jr # —»P0, over a (complete) 
separable metric space, then there exist random variables Xn with 
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distributions Pn and Xn—^Xo almost surely. The following example is 
based on one of Fernique's (cf. Badrikian [l, Exposé 8, No. 6]). 

PROPOSITION 5. There exist Borel probability measures /xw on a 
Hubert space H with juo concentrated at 0 such that fjLn—ïfxofor the weak 
topology on H but there are no random variables Xn with distributions ju» 
which converge weakly to 0 with positive probability. 

To prove this, let {<pm} be an orthonormal basis of H and let fxn 

give mass l / 2 n to w^>wfor w = l, • • • , 2W. 
ACKNOWLEDGEMENT. I am indebted to C. L. Reedy for contributing 

Proposition 4 and an earlier result in the direction of Proposition 3. 
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