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Let 2D be a bounded domain in Cn with smooth boundary. We shall 
consider the behavior near the boundary of holomorphic functions 
in 2D. Our results are of two kinds: those valid without any further 
restriction on 3D, and those which require that 3D is strictly pseudo-
convex. Detailed proofs will appear in [7]. 

1. Fatou's theorem and Hp spaces. We assume that 2D is a bounded 
domain with smooth boundary. We first define the appropriate ap
proach to the boundary which extends the usual nontangential ap
proach and takes into account the complex structure of Cn. Let 
w£ö3D, and let vw be the unit outward normal at w. For each a > 0 
consider the approach region Ct«(w) defined by 

a«(w) = {* £ 2D: | (* - w, vv) | < (1 + a)ôw(z), | z - w |2 < aÔw(z)}. 

Here (s, w) =s 1 wi+ • • • +znwn, \ z\ 2 = (3, 2), and Sw(z) denotes the 
minimum of the distances of z from Ô2D and from z to the tangent 
hyperplane to d 3D at w. 

We shall say that F is admissibly bounded at w if sup*eaö(«;) | F(z) | 
< 00, for some a; F has an admissible limit at w> if lim*^, e<=aa{w)F(z) 
exists, for all a > 0 . On d2D we shall take the measure induced by 
Lebesgue measure on O ; we denote it by m( • ), or da. The extension of 
the classical Fatou theorem is as follows. 

THEOREM 1. Suppose F is holomorphic and bounded in 2D. Then F 
has an admissible limit at almost everywÇEd£>. 

Note. This is stronger than the usual nontangential approach one 
would obtain using the theory of harmonic functions in R2n. As is 
to be observed, the admissible approach allows a parabolic tangential 
approach in directions corresponding to In — 2 real dimensions. 

We consider two types of balls on d£>. For any p > 0 and ze/£d2D, 
(1) Bi(w,p)=*{w'E.d$>\\w-w'\ < p } ; 
(2) Bi(w, p) = {w / ed2D: | (w-w / , v„)\ <p , | w - w ' | f < p } . 

Observe that m(Bi(w, p))~c1p2n~"1, and m(Bs(w, p))~ctpn as p—»0. 

AMS 1969 subject classifications. Primary 3217, 3111; Secondary 3220. 
Key words and phrases. Fatou's theorem, strictly pseudo-convex domains, 

maximal functions, H*> spaces, Kâhler metric. 

1292 



BOUNDARY VALUES OF HOLOMORPHIC FUNCTIONS 1293 

THEOREM 3. Suppose FÇEN. Then F has admissible limits at almost 
every wÇzdtD. 

We consider the following related maximal functions defined for 
function on d3D: 

ff(w) = sup — — f | ƒ(«/) | <fo(iiO, i - 1, 2. 
P>O m(Bj(w, p))J Bi{w,P) 

Then the ff satisfy the usual inequalities for maximal functions. 
(For j = l, see e.g. K. T. Smith [4]; forj = 2, see e.g. Hörmander [ l ] , 
or Stein [ó], and the works cited there.) We define Mf to be the 
superposition of these two, i.e. M(f)(w) = (/f)*(^). The main step in 
the proof of Theorem 1 is an argument of harmonic majorization 
which is essentially contained in the following lemma. 

LEMMA. Suppose u is continuous in 3D and pluri-subharmonic in 3D. 
Let ƒ be the restriction of u tod 3D. Then for each a > 0 

(3) sup | «(g) | £CaMf(w). 

The same argument also allows an extension to Hp spaces. Suppose 
X(s) is a smooth real-valued function on Cn, so that 3D = {z:\(z) < 0 } , 
and | VA(s°) | > 0 , whenever X(s°) = 0 . For sufficiently small € consider 
the approximating regions 3D« defined by 3D€ = {z:\(z) < — e}. If 
0<p< oo, and F is holomorphic in 3D, we say that F(EHP(£>) if 

sup f | F(z) \pdae(z) < oo. 

dcr€ is the measure on 33D« induced by Lebesgue measure in Cn. I t can 
be shown that the property that F£:HP(£>) is independent of the par
ticular approximating regions 3Df defined above, and is thus intrinsic. 
I t is equivalent with the fact that \ F\p has a harmonic majorant in 
3D. ("Harmonic" is taken in the usual sense in jR2n.) 

THEOREM 2. Suppose F&Hp($>). Then 

(a) f sup | F(z) \pd<x(w) g ^ . « s u p f | F(z) \pdv<(z)\ 
J dï) *€ûa(w) «>0 J d&6 

(b) F has an admissible limit at almost every w £ d SX 

There is an analogue also for the Nevanlinna class N. This class is 
defined as all holomorphic functions Fin 3D for which 

sup f \og^\F(z)\da9(z) < oo. 
«>0 J dS>€ 
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The proof of Theorem 3 requires a modification of estimate (3) of 
Lemma 1, where M is replaced by a variant which is finite almost 
everywhere whenever/GL^dcr).1 

2. Local Fatou theorem and area integral. From now on we shall 
assume that in addition 2D is strictly pseudo-convex. We shall intro
duce a potential theory in 3D which reflects this property in an in
timate way. This will be done in terms of a Kâhler metric which we 
now construct in terms of the geometry of d2D. For every z G 3D 
sufficiently close to <92D, let n(z) denote the normal projection of z on 
d3D. Then the mapping 2—m(z) is smooth. For z near Ô2D we let vz 

denote the (outward) unit normal at n{z). This induces a direct sum 
decomposition Cn = Nz@CZl where Nz = {Cvz} and CZ = {NZ)L\ the 
orthogonal complement is taken with respect to the usual (complex) 
inner product ( •, • ) on O . Nz and Cz have complex dimension 1 and 
n — 1 respectively. 

LEMMA 2. There exists a Kâhler metric ds2 = ^2gij(z)dZidzj defined 
on 2D with the following properties: 

(a) The ga(z) are smooth on 2D. 
(b) E u g</(*)J\?y« (S(s))-2 | f| \ for ÇEN,. 

(c) E u «<K*)r&~ («WH rl *, ƒ" f e e 
(d) |E../g*(2)r£l ^(5(z))-*|rllr|, ƒ«• rec,, a** r e ^ -

5(z)denotes the distance of z from 5 3D. 

One choice of the metric g», is the one given near the boundary by 
*«(*) « T ^ r [log l/«(«)]. 

dZidZj 

With this metric we form the Laplace-Beltrami operator A which is 
given by 

A = 4 £ g13 — > 
t,j dZidZj 

where {gij} is the inverse matrix to {gij}. This Laplace operator is 
elliptic in 3D but degenerates at the boundary in a way which takes 
into account the strict pseudo-convexity of 3 2D. We study the poten
tial theory for the Kâhler manifold 3D with the above metric and 
Laplace operator A, by applying Green's theorem in this set up. The 
following lemma is needed to carry this out. 

1 The argument at this stage was suggested to me by C. L. Fefferman. 
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LEMMA 3. For z near the boundary | A[(Ô(s))n]| èc(8(z))n+1. 

The thrust of the lemma is that (S(z))n is approximately "har
monic" with respect to A. In effect (d(z))n plays the role near the 
boundary that log 1/1 z\ plays near \z\ = 1 in the case n = 1, when 2D is 
the unit disc. 

To state the main result we define the analogue of the area inte
gral. Let | VF\2 denote the square of the norm of the gradient (taken 
with respect to the metric ds2 above) for holomorphic F. Thus 

|VF|..2S8''f f • 
id dZi dz,' 

For any a > 0 we define 

| VF(z)\2dQ(z) S(F)(w)=( f \VF(z)\2dQ(z)\ 
\ J a (to) / 

where dB is the element of volume induced by the metric ds2. In order 
to see the meaning of the above suppose for simplicity that w = 0, and 
the unit normal vw is along the positive y\ direction, Zx — xx+iyi. Then 
in ®a(w) 

\VF\*~y\ 
dF 

dZi 

2 n 

Jfc«2 

dF 

dZk 

and dQ^yi n 1dzt where dz denotes Lebesgue measure in Cn. 

THEOREM 4. Suppose F is holomorphic in 3D. Then at almost every 
w Gô 3D the following properties are equivalent: 

(a) F is admissibly bounded at w. 
(b) F has an admissible limit at w. 
(c) 5(/0(w)<». 

The idea of the proof is to show that almost everywhere (a)=>(c), 
and (c)=>(b). To prove (a)=»(b) we use the analogue of the argument 
involving Green's theorem we gave in [5], but now for the potential 
theory constructed above. To prove (c)=»(b) we show first that the 
finiteness of S(F) implies the finiteness of the standard "area inte
gral", thus implying nontangential convergence for almost every 
point in question. Secondly, condition (c) can also be used as a 
Tauberian condition, refining nontangential to admissible conver
gence. 
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