INTRINSICALLY ERGODIC SYSTEMS
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Let ¢ be a continuous mapping of a compact metric space X into
itself and M the set of normalized (u(x) =1) ¢-invariant measures on
X. Kryloff and Bogoliouboff introduced the notion of unique ergodic-
ity to describe the situation in which My reduces to a single point.
We shall present here a generalization of this concept, illustrate its
usefulness and discuss some examples.

1. Denote the measure entropy of ¢ with respect to p&E M,y by
h.(¢) and set
k(¢) = sup hu(4).

kreM¢

DEerFINITION. If /($) <+ o and there exists a unique BE My such

that
hi(¢) = k()

then (X, ¢) is said to be an inirinsically ergodic system (i.e.s.).

Clearly a uniquely ergodic system with finite entropy is an i.e.s.;
that the converse is not true may be seen already from the example
of the bilateral 2-shift which is obviously not uniquely ergodic but is
an i.e.s. We shall sketch two proofs of this well-known fact, since the
methods are useful for later generalizations.

1. (After Parry [9].) Let a denote the basic partition of X 2 { 0,1 }
into two sets, 4o, 4 where A, consists of all sequences with an 7 in
the zeroth place. « is a generator for the shift with respect to any
regular shift invariant measure m (see [10] for the facts and notations
of entropy theory used here) and one deduces from the fact that
equality holds in

Hu(aV ¢7'a) = Hu(a) + Hn(¢7'a)

only if @ and ¢~ are independent, that a maximizing m must be such
that the coordinate functions are independent. Then an elementary
computation reveals that there is a unique measure maximizing the
entropy.
2. (After [2].) One observes that the number of sets in @, ¢~'e,
«++, ¢ is 2" and hence
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H(a V ¢-—1av ... V ¢-n+1a) é log on

with equality if and only if the measures of all setsina\V¢~laV/ - - -
V¢t are equal. Since the standard measure for the 2-shift has
this property it is the unigue shift invariant measure with entropy
log 2.

Now assuming that <+ «, (X, ¢) can fail to be an i.e.s. for one
of two reasons. It may be that there are many measures p such that
h.(®) =h(¢). Consider for example two copies of the two shift X
and X, and set X =X;UX,. Then it is easy to see that A=log 2
while we can distribute part of the standard measure on X, and part
on Xz.

The second possibility is that there is no measure u such that
h.(®) = k(). This possibility was observed by Gurevich [8]. In case
X is closed shift invariant subset of X :,{1, 2, .- k}, and ¢ is the
shift restricted to X then this second possibility cannot occur, i.e.
one can show that there exists some measure with %,(¢)=~7k(p).
Basically the reason for this is that there exists a finite partition of
X:.,{l, 2, - k} into clopen sets that is a generator for the shift
with respect to every measure.

2. The first application is a simple proposition a version of which
was first used in [1], that shows how the isomorphism problem
simplifies for i.e.s. Recall that the measure preserving transforma-
tions (X, ¢, p) and (X', ¢', u') are isomorphic if there exists an in-
vertible measurable mapping v from X to X’ so that ¢'v=wv¢, and
p(14) =u'(A) for all measurable subsets of X.

ProrpositioN 1. Let (X, ¢), (X', ¢') be a pair of i.e.s. such that
h(p) =h(¢’). Then if v is an invertible measure transformation from X
to X' such that ¢’v=ve, (X, @, u) is isomorphic to (X', ¢', u') where u
and u' are the measures of maximal eniropy.

For the second illustration suppose that (X, ¢) is an i.e.s. and
v:X—X' is equivariant with ¢’: X'—X’, i.e. ¢'v=v¢ where v, ¢’ are
continuous and X’ is compact. Recall that xEX is said to be a
generic point for a ¢-invariant measure p if

1 2
— 3 )~ [ fenian
no1

for all continuous functions f. Then we have

PROPOSITION 2. In the situation described above if x' is a gemeric
point for u’ on X' with hu(¢") =h(p) then any xEv=1(x’) is a generic
point for p.
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As an application of this last proposition one can obtain the re-
sults of V. N. Agafonov [3] on normal sequences, to wit that if a
subsequence {nk} is defined by means of a finite automaton acting
on the initial segments of a normal sequence &£, + - - (i.e. # belongs
to {n,,} if and only if &£, - - - £, is accepted by the automaton) then
EnpEngiEnsty © + ¢ Is again a normal sequence. For the connection
between generic points and results of this type, as well as a
different approach see [5, Chapter 8]. Details of this application
will appear elsewhere.

3. We discuss now some examples of i.e.s.

(1) Subshifts of finite type: (a) Let X = Xf,{l, 2, -k} been-
dowed with the product topology, ¢:X—X the shift,and X,CX a
closed subset of X defined by 4C X'{‘{l, 2, k} as follows:

X4 = {x € X:no a € A4 occurs as an m-block in X}.

Parry [9] showed that if 4 is “aperiodic” then (X4, ¢) is an i.e.s.

(b) A generalization of (a) has been suggested by H. Furstenberg.
Let G be a finite semigroup with generators g;, -+ - -, gr and a two-
sided zero (0 - g=g - 0=0all g&EG). An element xEX is G admissible
if for all 1 =75

8eiBtivs - " 8 # 0

where x = { co by, b0y by e } If X¢ is the set of G-admissible
elements of X, then X ¢ is shift invariant and if G satisfies a certain
“mixing” condition, that corresponds to the “aperiodicity” in the
case (a) then (Xg, o) is an i.e.s. The proof follows the lines of the
second proof in §1.

(2) Ergodic automorphisms of compact groups are i.e.s. This was
shown for the torus in [1] and in the general case by K. Berg [4]. A
key fact in Berg's proof is that ergodic automorphisms are Kolmo-
gorov automorphisms, and it is probable that those affine trans-
formations on nil manifolds that are Kolmogorov automorphisms
are i.e.s.

(3) Let E={{eP}, - - - {e®}} be & sequences of zeros and ones,
we shall say thatx € X 2., {0, 1, -+ -, k} is E-admissible if

(i) the symbols {1, c e, k} are isolated in x, i.e. they are pre-
ceded and followed by a zero.

(i) If&n EnmE{1,2, - - -, k} while£nyi=0,5=1, - - - ,m—1, then
e"=1, where x=( - - - £y, £o, &1, « + - ). The shift restricted to the
closure of the set of E-admissible sequences in an i.e.s. (if the {e?’ }
are “aperiodic”) and % =Ilog ¢ where ¢ is the unique positive root of
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i( 3 e?’)t“ =1

1 J=1

The proof of this fact follows the lines of the first proof of the i.e.s.
of the 2-shift. Thus we can obtain easily an i.e.s. with arbitrary
values for %, a fact not readily evident from examples (1) and (2).

Dinaburg [5] has made use of these sets (for 2=1) in calculating
the topological entropy of certain C®-diffeomorphisms restricted to
a part of their nonwandering set.

In all of the examples known up to now %(¢) equals the topological
entropy of ¢. Goodwyn [7] has proved that &(¢) <hwp(¢), while the
example in [8] shows that there need not be any measure u in M,

with
hu($) = hiop(9).

Nonetheless, there is some evidence for the following conjecture with
which we conclude:

Congjecture. If X is a closed invariant subset of a finite shift ¢, such
that M, contains a measure u satisfying

1) (X, u, 0) is a K-automorphism;

(2) p assigns positive measure to open sets of X, then (X, o) is
an i.e.s. and % equals the topological entropy of (X, o).
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