
VECTOR FIELDS AND GAUSS-BONNET 

BY PAUL F. BAUM 

ABSTRACT. The topic is vector-fields and characteristic classes. 
The starting point is the classical Gauss-Bonnet theorem and the 
H. Hopf index theorem. After recalling these, curvature is used to 
define the Chern class of a complex analytic manifold. Then a 
recently proved formula relating Chern classes to zeroes of 
meromorphic vector-fields is given. 

This expository note will briefly outline some recent developments 
involving zeroes of vector fields and characteristic classes. The char­
acteristic classes used will be defined. 

This really begins with the classical Gauss-Bonnet theorem [17], 
so recall this theorem. Let M be a smooth compact oriented surface 
(without boundary) in R*. MC.RZ. Let v be a smooth field of unit 
normal vectors on M. 

Assume that v is compatible with the orientation of Min the sense that 
given pÇzM and given a positively oriented basis ei, e2 for 

TPM (TPM = tangent space of M a t p), 

then v(p) is a positive multiple of £1X02. Let S2 be the unit sphere of 
R\ S2= {(xi, x2, xz)ERd\x2

1+xt+xl = l}. Take S2 with its standard 
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orientation. For each pÇzM, let g(p) denote the unique unit vector 
emanating from the origin of JR3 parallel to v(p). 

S'M->S2 

The Gaussian curvature of M is defined to be the Jacobian of g. 
Tha t is, given p G M let A be a small open set of M with p ÇLA. Shrink 
A into p and define: 

area z(A) 
(1) K(p) = ± lim ^ - i -

A-»2> area A 

where the sign is taken to be plus or minus according as to whether 
g preserves or reverses orientation a t p. 

K(p) is the Gaussian curvature of M a t p. K(p) measures in a 
rather interesting fashion, the way in which M is curved at p. 

On M we have the geodesies of M (i.e., those curves on M which 
locally minimize arc length). Let A be a triangle on M whose sides 
are geodesies. Label the angles of A 0i, 02, 03. 

I t is a theorem of Gauss that if K is integrated over A, then the num­
ber obtained is 01+02+03—7i\ 

(2) f KdM = 0i + 02 + 03 - *r. 

(2) can be localized and globalized. 
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To localize (2), let p be interior to A and shrink A into p, through 
geodesic triangles. Then it is clear from (2) that 

0i H~ $2 H~ $3 — v 
(3) K(p) = lim - ± — - -

A-*P area A 
(3) greatly clarifies the meaning of Gaussian curvature. For one thing, 
(3) implies that Gaussian curvature depends only on the intrinsic 
differential geometry of M. This fact is known as the theorema egre-
gium of Gauss. I t led to the notion of curvature as defined and studied 
in present-day Riemannian geometry. Secondly, (3) shows that the 
Gaussian curvature a t a point p is positive or negative according as 
to whether small geodesic triangles about p have angle sum greater 
than or less than ir. 

To globalize (2), triangulate M by a triangulation in which each 
face is a geodesic triangle. Summing (2) over all the faces then gives 
that the integral of K over all of M is 27r times the Euler number of M. 

(4) — f KdM = x(M). 
LIT J M 

(4) is the Gauss-Bonnet theorem for M. x ( ^ 0 is by definition equal 
to j3o—jSi+ft where jS» is the i th Betti number of M. 

(4) is really quite surprising. If M is deformed a bit, then the 
Gaussian curvature changes radically. But despite this the integral of 
the Gaussian curvature over M remains constant. 

Very closely related to (4) is Poincaré's theorem on the zeroes of 
vector fields [12], [14]. Let M be as above and let F be a smooth 
tangent vector field on M. Assume that there are only finitely many 
points of M where V vanishes. Given pÇzM with V(p)=0 define 
u(V, p) to be the winding number of Vabout p. Tha t is, introduce a 
local coordinate system xi, x% about p with 0=x\(p) =x*t(p). V then 
has the local expanison 

d d 
V=h — + / 2 — • 

dxi ÔX2 

Let r be a small circle about the origin and map T into R2 by 
(xi, X2)—»(/i(#i, #2), f2(xi, #2)). w(F, p) is then the net number of times 
that this map winds Y around the origin. Poincaré's theorem asserts 
(5) E »(V, P) - x(M). 

V e Zero (7) 

(4) and (5) imply each other. 
Both the Gauss-Bonnet theorem and the Poincaré theorem general­

ize to manifolds of higher dimension. 
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If Af is a smooth compact oriented manifold (without boundary) 
and Fis a (tangent) vector field on M with only finitely many zeroes, 
then according to a well-known theorem of Heinz Hopf [15], [16], 

(6) £ "(F, P) - X(M). 
pGZero(F) 

In (6), co(F, p) is the local degree of V about p. This is defined by 
first introducing local coordinates xi, x2, • • • , xn about p, with 
0=xi(p)= • • • =xn(p). V then has the local expansion 

Let r be a small sphere of radius r centered at the origin. Map T to 
itself by 

/ n \ - l / 2 

* = (*i> • ' ' 7 *n) -»rf £/<(*) M (/i(*)> ƒ»(*))• 

<*>( V, />) is the degree of this map in the sense of algebraic topology. 
More simply, p is said to be a non-degenerate zero if the matrix of 
partial derivatives ||(ô/*/d#/)(/>)|| is non-singular. In this case 
<*(V, p) is ±1 according as to whether 

det 
ah 

is positive or negative. This is the generic case. 
In (6), x(M) is the Euler number of M. By definition this is 

]C?-o (~"1)*0* where j8t- is the ith Betti number of M and n is the 
dimension of M. 

As for Gauss-Bonnet, if M is a compact oriented even-dimensional 
Riemann manifold, then the curvature of M in the sense of Rie-
mannian geometry determines a differential form Q (called the 
Gauss-Bonnet form) [9] with the property: 

^ '""x w = dim M. (-1)»'2-1 e 
2"ir»'*(fi/2!) J M 

(6) and (7) are very closely related. When M is even-dimensional, 
(6) and (7) imply each other. When w = 2, Q = 2KdM. 

To carry matters further, let M now be a compact complex analytic 
manifold with dimc M = «. In the cohomology of M we have the 
Chern classes ci, Ctf • • • , cn of M. dÇzHu(M). To define these, work 
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with the complex-valued smooth differential forms on w. So we have 
the de Rham complex of these forms 

A ^ A A 2 - ^ • • • AA2». 

A0 is just the collection of all smooth functions/: M—>C. If Zi, • • • , zn 

is a local analytic coordinate system on M} then an coGA1 is locally of 
the form 

n n 

*52fidZi+J2gidZi 
<—l *«»i 

where ƒ» and g» are smooth complex-valued functions. Similarly for 
A2, A8, . . . , A2n. Note that A0 is a ring and each A* is a module over 
A°. 

For each pEiM, let TPM be the tangent space of M a t p viewed as 
a vector space over the complex numbers. d im c TpM = n = dimc M. 
Set r = UPEitf TPM. T has the structure of a holomorphic vector 
bundle over M and is the holomorphic tangent bundle of M. Let 
C™(T) be the space of all smooth sections of T. Thus C°°(T) is the 
space of all smooth vector fields on M. C°°(T) is a module over A0, 
since g iven/ : M-+C and given V&C"(T), we can form ƒ VEC^^T). 

A connection for T is a C-linear map D 

D:C«(T)->A.1®lj>C«>(<T) 

such that D(JV) =df® V+f(DV). 
Connections are easy to construct. First one observes that locally 

there is no difficulty. Then one constructs a connection for T on all 
of M by patching together locally defined connections with a smooth 
partition of unity. 

So fix a connection D for T. 
Let U be an open set of M and let Vi, F2, . . . , Vn be a frame of 

T on U, i.e., for each pEU, V\(p)> . . . , Vn(p) is a basis (over C) 
for rpAf. Then on U an wXw matrix (0#) of 1-forms is determined by 
the equation: 

DVi - è 0,/ ® Fy. 

Set K = de-6A0, i.e., Kij^dBij- ]T£-i 0.«A0«y. # is an wXw matrix 
of 2-forms. if is called the curvature matrix of P with respect to the 
frame Vi, . . . , F n . 

Let Fi, . . . , Vn be another frame of T over [/, and let K be the 
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curvature matrix of D with respect to "Pi, • • • , F». Define an nXn 
matrix A of functions by: 

fi - È AaVê. 

T h e n ^ ^ i ^ - 1 . 
This is a very agreeable equation because if we now take det K, 

trace K, etc., then we will obtain a well-defined differential form on 
all of M. So we set 

(8) det(l + — KJ - 1 + a)! + co2 + • • • + Û>,. 

Here I is the nXn identity matrix. Note that coi = (i/27r) Trace K, 
o)n==(i/27r)n det K, COJ£A 2 \ I t can now be proved that each co» is 
closed and that the cohomology class determined by co* is independent 
of the choice of connection [8]. This cohomology class is, by defini­
tion, the ith Chern class of M. 

(9) a = dass(«<) £ H2i(M; C). 

This is the curvature definition of the Chern class, due to S. S. 
Chern and A. Weil. 

The Gauss-Bonnet theorem [8] in the present context becomes: 

(10) f cn = X(M). 

What about a Gauss-Bonnet theorem for the other aï This can be 
done. First recall that on M we have the Poincaré duality isomor­
phism between the ith cohomology group of M and the (2n—i)th 
homology group of M. 

(11) W{M\O^E^i{M\C). 

This is a canonical isomorphism and can be explained as follows: On 
M we have two canonical non-singular bilinear pairings. 

#2»-*(M; C) X ff(I; C) -> C, 

ff«*-«(Jf ; C) X #2«-<(M; C) -> C. 

The upper pairing is given by (co, rj)—>/M COA*? where coEA2w~* and 
77 £ A*. The lower pairing is given by (co, 2)—»ƒ* co where co£A2n~* and 
z is a (2w—i)-cycle on M. Since the pairings are both non-singular 
and have the same left term this gives an isomorphism of the right 
terms. 
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If F is a vector field on M with only finitely many zeroes, then 
assigning to each ££Zero(F) the integer co(F, p) gives a 0-cycle on M 
which shall be denoted by Z(V). Then in view of the Hopf theorem, 
(10) can be restated as 

(12) cn = Poincaré dual of Z(V). 

Consider now c». Let V%, F*, . . . , Fn~i+ibe w—i+1 smooth vector 
fields on M in general position (i.e., make a generic choice on n—i+1 
smooth vector fields M). At most points of M, Vif • • • , Fn-»+i will 
be linearly independent (over C). But the points of M at which 
Vu • . • i Fn-i+i are linearly dependent (over C) will form a 
cycle of dimension 2(n — i). Hence we have a homology class 
Z(Vu Fa, . . . , F»_t-+i)GJ^2n~2i(M; C). The Gauss-Bonnet formula 
for c% then becomes 

(13) a = Poincaré dual of Z(Vi,. . . , F»_<+i), i = 1, 2,. . . , w. 

(13) is usually referred to as the equivalence of the curvature 
definition and the obstruction theory definition of the Chern class 
[10], [11], [13]. 

(13) strongly suggests that the Chern classes of M are essentially 
topological invariants of M and depend only very weakly on the 
complex analytic structure of M. This is, in fact, the case. For in­
stance, if the complex analytic structure of M is deformed, keeping 
the underlying C°°-structure of M unchanged, then the Chern classes 
of M remain unchanged. 

So up to now the complex analytic structure of M has not been used 
in any really essential way. At this point Raoul Bott entered the 
picture and did something which really did depend on the holomophic 
structure of M. Bott asked: What happens in the Hopf theorem 
if F is a holomorphic vector field? He then proved a very interesting 
refinement of the Hopf theorem. 

Before stating Bott's theorem we need a remark about holomorphic 
vector fields. Let F be a holomorphic vector field on M and let p be a 
zero of V. Introduce analytic coordinates zi, . . . , zn about p. Then 
about p, V has the local expansion ^=E?-i/i(ô/dz<), where the 
fi are holomorphic functions. Form the matrix ||(d/</ô*y)(£)||. This is 
an nXn matrix of complex numbers. Let Xi, • • • , X» be the eigen­
values of this matrix. The remark we need is that these eigenvalues 
Xi, . . . , Xn do not depend on the choice of coordinate system about 
p. Thus these eigenvalues are well-defined invariants of the local 
behavior of M about p. p is a non-degenerate zero if all the X»- are 
non-zero. A non-degenerate zero must be isolated. 

Bott's theorem [5], [ô]is: 
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THEOREM (BOTT) . Let V be a holomorphic vector field on M. Assume 
that each zero of V is non-degenerate. Let X\> . . . , Xn be indeterminates 
andlet<f)(Xi, . . . ,Z„) be a symmetric polynomial which is homogeneous 
of degree n. 4>{XU • • • , Xn)eC[Xh . . . , Xn}. Set <j>(Xlt . . . , Xn) 
=<?(<ri, . . . , <rn) where cr* are the elementary symmetric f unctions of the 
Xi. Then 

f < A \ X^ *( X 1» X 2, • • • ,Xn) C 
(14) 2L, — — : ^ I *(*i> ci9. . . , c n ) . 

i>eZero(V) A1A2 . . . An J M 

If <j>=XiXt • • • Xn then (14) becomes 

(15) £ 1 = f cn. 
peZero(F) J M 

Since the local degree of a holomorphic vector field a t a non-de­
generate zero is always + 1 , (15) follows from the Hopf theorem. But 
in (14), 0 can be any symmetric polynomial which is homogeneous of 
degree n. Hence (14) can be viewed as a greatly strengthened Hopf 
theorem. 

V. Guillemin first proved some special cases of (14) as a corollary 
of the Atiyah-Bott fixed point theorem [ l ] , [S]. Bott then followed 
up Guillemin's idea and gave a simple direct proof of (14) using 
Stokes' theorem and the curvature definition of the Chern class. Thus 
Bott 's proof was in the Gauss-Bonnet spirit. A quite different proof 
of (14) has been given by M. Atiyah and I. Singer [2]. 

The beauty of (14) is slightly flawed by the fact that holomorphic 
vector fields very rarely exist on compact complex manifolds. Most 
compact complex manifolds do not admit any holomorphic vector 
fields. Bott and I, however, found that (14) can be generalized to 
meromorphic vector fields. This removes the flaw because mero-
morphic vector fields are plentiful. 

In order to generalize (14) to the case when F is a meromorphic 
vector field on M, the pole of V must be taken into account. The pole 
of V (i.e. the set of points where V blows up) will be a complex 
analytic subvariety of M of complex dimension n — 1. I t has complex 
dimension w —1 because locally a meromorphic vector field has the 
expansion 

h à f2 à fn d 

g àzi g dz2 g dzn 

where ƒ»• and g are holomorphic functions. Thus locally the pole 
is the set of points where g vanishes, and this has complex dimension 
n — 1. Hence the pole is a 2(w —1) cycle on M, and this gives a 
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homology class P£l?2n-2(Af; C). Denote the Poincaré dual of P 
by P*. P*EH2(M; C). Define cohomology classes aiEH2i(M; C) by: 

Oi = d + Ci-tP* + <^2(P*)2 + . • . + Ci(P*)M + (P*)'. 

Assume now that F is a meromorphic vector field on M with only non-
degenerate zeroes. Away from its pole V is just a holomorphic vec­
tor field so, as above, a t each zero there are eigenvalues Xi,X2, . . . , X». 
As above let <j>(Xi, . . . , Xn) be a symmetric and homogeneous 
polynomial degree n, and set <£(Xi, . . . , Xn) =<?(o'i, . . . , o*»). Bott 
and I [3] found that : 

/ i * \ v^ <ft(Xi, x 2 , . . . , xw) r 
(16) 2u — — : = I 4>iflu <i2,. . . , a»). 

pGZero(7) A1A2 . . . A n J M 

We have devised three different proofs of (16). The first proof, see 
[3], depends on a slightly mysterious curvature construction which 
has been called a Kunstgriff. The other two proofs are unpublished. 
One uses a blowing-up technique and the other uses a homotopy 
argument. All these proofs use curvature and as far as we know at the 
present moment these are the only proofs of (16) currently in exis­
tence. We do not know if (16) can be proved by applying the theory of 
[ l ] a n d [2]. 

After we had conjectured and proved (16), Bott made an ingenious 
observation [7]. He shifted attention from the meromorphic vector 
field V itself to the flow lines of V. Although V itself blows up at its 
pole, the flow lines can be continued across the pole in a regular 
fashion. So the flow lines yield a 1-dimensional holomorphic foliation 
with singularities. The singularities occur only a t the zeroes of V. 
(16) may then be interpreted as an equation relating the local behav­
ior of this foliation at its singularities to certain cohomology classes 
which arise from global consideration of the foliation. Bott went on 
from this to show that there should be a formula generalizing (16) 
to the case of foliations (with singularities) of dimension greater than 
one. Bott and I have arrived at a partial understanding of this 
question and we will report on it a t a future date. 

From complex manifolds one can move in two directions: to 
Riemannian geometry or to abstract algebraic geometry. In 
Riemannian geometry one works with Killing vector fields and 
Pontryagin classes. Contributions here have been made by Bott [5], 
Jeff Cheeger and myself [4], and Joel Pasternack [18]. See also [2] 
and an unpublished cobordism argument (using rational homology 
manifolds) of Bott and D. Sullivan. 
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I t seems quite probable that the proof of (16) can be translated 
from de Rham cohomology to sheaf cohomology. Some progress in 
this direction is indicated in [3]. Once this is done, (16) will become 
a theorem in abstract algebraic geometry where the ground field can 
be any algebraically closed field. So the spirit of Gauss-Bonnet 
penetrates even into the realm of abstract algebraic geometry. 
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