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The existence of global solutions to equations of the form 

\Z\u = mhi + G(%, t, u, uh ux),m > 0, 

can be proved for a wide class of perturbations G. Estimates on the 
decay of these solutions (i.e. of 

l l«W| |r = | | « ( - , 0 | | r aild | | f l ( 0 | | , = | | « « ( - , 0 | | r 

as 11| —>oo ) which are suitable for the scattering theory of these 
equations have also been obtained. The results to be summarized 
here generalize the decay results of Segal [ l ] for G(u) not only in 
that more general types of perturbations may be treated but also in 
the fact that no a priori global existence is required. 

1. Abstract decay result. Let A2 denote the selfadjoint realization 
of m2/—A on L2(En). The real solution spaces, H(A, a), which are 
relevant in this work are, for each aÇzR, the completions of 
D(Aa)@D(Aa-1) with respect to the inner product 

« 2 / \V2// 

The norm of (2(
(o)G-ff(-4, a) will be denoted by | u(i)\a as opposed to 

the usual Z>-norm | | ^ ( 0 | | Î » and G{ • , tt u(t), «(/), ux(t)) will be re­
placed by G{t, uit)). 

A list of assumptions will now be presented leading up to the 
final result which will be given as a summarizing theorem. To begin, 
pick r and a in such a way that 

(I) | | « (0 | | r , | | l i ( 0 | | r ^ C o n S t | « ( / ) | a , 

so that the continuity of ||w(/)||r and ||w(0||r follows from that of 
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|w(/) |0 . Assume G is sufficiently smooth and has suitable growth 
properties so that (Sobolev inequalities will give) 

(II) || AhG(t, «(0) | | , £ g Const | «(0 O«(0| | r | |«(O| |r 

for l + r ~ 1 = £ - 1 + g , - 1 a s w e l l a s g = 2 for some 6 ïa a, and 

(III) WA'-'cd, «(0) | | . û g Const| «(0 r. ("""1 / , ) | |«(0| |r"| |«(0| |r ' . 

Assumption (II) is required twice with perhaps different values of 
q (i.e. also for q' with corresponding exponents a', /3', 7'). For the 
particular choice of b in (II) consider the fundamental solutions of 
the Klein-Gordon equation (i.e. G^O) Et,b and Fttb defined as the 
regular distributions whose Fourier transforms are 

($2 + m2)-(6 + 1>/2sin^2 + w2)1/2 and (£2 + m ^ + ^ c o s / ^ 2 + w2)1 '2 

respectively. For the p and p' determined by (II) suppose 
that the known results [2] on the decay of Et,b and Ft,b give 
| | £ a | | p ^ C o n s t ( l + | / | ) - * and | |F i ,6- i | | p ^Const ( l + |/|)--o- for all 
t(~zR then the following consistency condition must be satisfied by all 
the exponents: 

max(p, fie + 78) > 1, min(p, fie + yô) ^ e, 

(IV) max(<r, jS'e + y'd) > 1, min(cr, 0'e + 7'$) è 8, 

j8//€ + 7 / / * > 1, 

where € and 8 are the anticipated decay rates of ||«(0||r and ||w(0||r 
respectively. Finally, the Cauchy data at some finite time t0 are 
chosen smooth enough so that the corresponding solution of the 
Klein-Gordon equation, Uo(t) decays at least as fast as that desired 
for the perturbed equation, or more precisely, 

(V) ||«o(/)||r ^ *o(l + \t\ ) - and ||f*o(0||r ^ *>(1 + \*\ )-* 

for all i £ R , where x0, xo are locally bounded functions of t0 which 
can be made small by reducing the size of the Cauchy data. 

ABSTRACT THEOREM. Suppose that the (integrated form of the) equa-
tionJL3u=m2u + G(x, t, u, ut, ux) has a unique solution (2(J))£iïC<4, a) 
over some interval I containing to, such that (*$) is continuous from 
I—* H (A, a). If assumptions (I)-(V) are satisfied and either 

(i) ce+/3+7, a ' + | 8 ' + 7 ' , a " + / 3 " + 7 " < l , 
(ii) a + j 3 + 7 , <x'+j3'+7', a"+$"+y">\ and x0i x0 and y0 

= supte^l uo(t) 12 sufficiently small or g sufficiently small or 



1034 J. M. CHADAM [September 

(iii) a, j3, • • • , j3", 7 " arbitrary and x0, x0, y0 and g sufficiently 
small, 
then the solution can be extended to all t&R and \\u(t)\\r = 0(\t\~~€), 
\\û(t)\\r = 0(\t\-t)and | «(01 a = 0(1) as | / | -><». 

The proof follows in part along the same lines as that of Segal [ l ] 
but ultimately a technical result concerning coupled sets of nonlinear 
inequalities is required. 

2. Examples. Many different perturbations fall within the scope 
of the above result (and slight variants of it) by making specific 
choices of the parameters (results stated for n = 3). In all of the cases 
listed below the local existence of the solution as assumed in the 
Abstract Theorem can be obtained from the various hypotheses 
by means of the general results of Segal [3 ] in this direction. 

THEOREM 1. (Cf. [l, Corollary 4.4B, p. 491].) Suppose 
G(x, t, u, ut, ux)=G(u) where GÇzC2(R), is real-valued and 
I d*G/dk>' (X) I ^ g j X j *-i for all\ and j = 0,1, 2, with ^^3. If the Cauchy 
data (l\)CzH(A, 2) are sufficiently smooth so that (V) is satisfied then 
the (integrated form of the) equation\Z\u = m2u-\-G(u) has a unique global 
solution with \\u(t)]\OQ = 0(\t\~zl2), ||«(*)|U = 0(M~"*) where 8 is arbi­
trary but < 1 and \u(t)\2 = 0(l) as |^| —>00, provided g or Xo+xo+yo 
is sufficiently small. 

The proof is obtained by taking b = 2, q = 1 and K g ' < 1/5. 

THEOREM 2. Suppose G(x, t, u, ut, ux) = G(ut) where GÇzCz(R), is 
real-valued and \d3'G/d\J' (X)| ^g\\\^-~3' for all X andj = 0, 1, 2, 3 with 
j 3^3 . If the Cauchy data Q ) £ H ( A , 3) is sufficiently smooth so that 
condition (V) is satisfied then (the integrated form of) the equation 
C]u = m2u+G(ut) has a unique global solution Q%l)ÇzH(A, 3) with 
| |*(0|U = O( |*h - ) where e = e(0) =3/2 for p> 7/2 e(P)<3(0-l)/5 for 
3£P£7/2,\\û(t)\\„ = 0(\t\^) where S<1 and \u(t)\z = 0(l) as \t\->*> 
provided that g or Xo+x0+yo is sufficiently small. 

The proof is obtained by taking 6 = 2, g = max(l , 508+3/2)""1) and 
ô<g , _ 1<§(j3 —1/8). In both of the above theorems the basic estimate 
corresponding to (II) and (III) is, for wÇE.D(A2), 

M ' G ( » ) | | . ^ g Cans tNCr 1 V H I Î ' ' , 1 * î S 2. 

THEOREM 3. Suppose G(x, t, u, utl ux)=
y^l^0G

k(u)uXk (x0 = t) 
where for each k = 0, 1, 2, 3, Gk&Cz(R), is real-valued \d*Gk/d\z (X)| 
Sg\Mak-j for all X and j = 0, 1, 2 with a* = 2 and \dzGk/d\z (X)j 
^g\\\asfor all\ with 0So^<^>. If the Cauchy data(^)^.H(A, 3) are 
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sufficiently smooth so that the condition (V) is satisfied, Jftew (J&e 
integrated form of) the eQuationr~\u = m2u + >HiLn Gk(u)uxu has a 
unique global solution (t%)EH(A, 3) with | | M ( 0 | U = O ( | / | - 1 ) » 

IÎ WIIoo = 0 ( | /| ~5/6) awd | u(t) 13 = 0(1) as | ̂ | —>oo, provided that either g 
or Xo+xo+yo is sufficiently small. 

The proof is obtained by taking & = 2, q — q' = 6/5. 

THEOREM 4. Suppose G(x, t, u, uh ux) = g G(x, t)u where G is real-
valued for each t, G( ' , t) is an element of the Sobolev space W2tP(E*) 
for p = l and oo (or equivalently lSp^°°)f \\G( • , Oik? is 
continuous for £ £ J R , | |0( • , t)\\2,i uniformly bounded in t and 
\\G( • , 0|k.o = 0(|*|"*) as |/|—>oo. If the Cauchy data <£)£H(A9 3) 
are sufficiently smooth so that condition (V) is satisfied then the (inte­
grated form of the) equation\Z\u = m2u+g G(xy t)u has a unique global 
solution ® £ i î ( i , 3) with | | K ( 0 | U = O ( M - » ' * ) , ||iKO|U = 0 (M-*) , 
S < 1, and | ̂ (^) 13 = 0(1) as | ̂ | —>• oo provided that g is sufficiently small. 

The proof is obtained by taking 6 = 2, q = l and K g ' < 1/8. The 
hypotheses on G are suggested by those that would be obtained from 
taking G(x, t) = (v(x, t))2 where v is a solution of the Klein-Gordon 
equation with very smooth Cauchy data (i.e. the first variational 
equation oî\Zlu=m2u+guz). 
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