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Let (£2, F , P ) be a probability space. Let Sïïl designate the collection 
of all probability distributions {p~ {pi}?~oy pt^0> lL,Pi~l) on the 
nonnegative integers satisfying the further constraints 

CO 

(1) Hipi< °°> 0 g fo + * i < 1. 

Let ft(o>); i = 0, 1, 2, • • • be a sequence of random mappings from 
(fl, F , P ) into (loo, &oo) where <£<» is the Borel (7-algebra in lw (the 
Banach space of bounded sequences of real numbers) generated by 
the product topology. We assume 

(2) P{co; ft(co) G 9TC for all i) = 1. 

For any f G 9TC associate the p.g.f. 

(3) *rw = ê^(r)^ kl £ i . 

Let Zn(co), n ^ 0 be a sequence of nonnegative integer valued random 
variables defined on (Q, F, P ) . For any collection D of random ele
ments on (£2, F , P ) let cr(D) denote the sub cr-algebra of F generated 
by D. Set 

Fn(?) = er(fo,f l , • ' ' , f n ) , F ( f ) = U F . ( f ) , 
(4) «*i 

Fn,z(f) = ö"G*0> f 1> ' * * , f n , ^ 0 , Zl, ' ' * , ^rc). 

We postulate that {Zn} satisfy the recurrence relations 

(5) E(sz^\Fn,z) = K W ] ^ a.s. 

and for any set of integers l ^ W i < w 2 < • • • <rik with | s t - | â l , 
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* = 1 , 2 , • • • ,k 

(6) E{sW^ • • • sln" | Fff) ; Z0 = m) 

= [£(,Xn2---^|F(f);Z0 = l)r. 
The proof of existence of a process satisfying these axioms is 

routine and parallels the constructions given in Harris [ l ] . The pro
cess {Zn(o>); # = 0, 1, 2, • • • } is called a branching process with 
random environments (B.P.R.E.) and the process f ~ GTo(^),fi(w), • • • ) 
the environmental process. 

A special example of this was first introduced by Wilkinson and 
Smith [S] (see also [4]). They considered the case when f = {f»•(«); 
* = 0, 1,2, • • • } is a sequence of independent identically distributed 
random variables. Their efforts were devoted to ascertaining criteria 
delimiting certain extinction of the process. We study this problem 
under less restrictive assumptions on the environmental process f. 
We also deduce limit theorems for Zn paralleling those of the classical 
Galton-Watson process. 

An easy consequence of (5) and (6) is 

LEMMA 1. 

(7) £(**•« | Zo « *, Fn(?)) = [*.(*,( • ' • ( * . « ) • ' ' )]*. 

Henceforth, unless stated explicitly otherwise we assume that fi(co), 
i*=0, l t 2, • • • is a stationary ergodic process. 

Let 

B = {co; Zn(œ) = 0 for some n}, qk = P(B \ Z0 = k), 
( 8 ) qk(f)=P(B\ZQ = k,F(f)). 

We refer to B as the set of extinction and <?&, #&(?) extinction probabil
ities. I t is clear from (7) that g>(?) = [q%(f)]k a.s. and 2* = 22([ji(?)]*), 
thus making {qk:k = l1 2, • • • } a moment sequence, (see Smith and 
Wilkinson [5]). 

Since the sequence of events 5 n = (co:Zn(co) = 0 } increases to B we 
have 2(?)=linw.o *ro(*h( * ' • (<&»(°) • • • ) = - E ( X B | F(f)) where x* 
denotes the indicator function of the set B. An immediate conse
quence of this formula is the important functional relationship 

(9) <?(?) - *o(?(ï?)) 

where T denotes the sW/2 transformation Tf » r ( f o , £i, f2, * • * ) 
= (ri> ?2> f3, • • • ). Recalling the stipulations of (1) and (2) we may 
conclude : The sets {co:q(f) = l} and {ca:q(Tf) = l} coincide modulo 
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a set of probability zero from which ensues the assertion P(g(f) = l) 
= 0or 1. 

We now exhibit a necessary condition for noncertain extinction i.e., 
for P(q(f)<l) = l. For any real number a, we employ the symbols 
a+ = max(0, a) and ar= —min(a, 0). 

THEOREM 1. Suppose 

(10) P(ff(f)<D = l and £[(log^o(D)+]< « 

(prime designates as usual the derivative). Then 

(11) E | log 4,(1) | < « , E log 4.(1) > 0 

and 

(12) £ log < oo, £logl 1 = 0 . 
I &l-q(Tfo)\ ' 8Vl-«(r?)/ 

We can extract from assertion (12) for some situations an integra-
bility property. 

THEOREM 2. Suppose P(g(?)<l) = l, J2[(log 0'ro(l))+]< » awd 
ft(«), i = 0, 1, 2, • • • are i.i.d. random variables (or fi(co)), i^Oform 
an irreducible finite Markov chain). Then JE(~log(l~0fo(O)))< oo. 

The result of Theorem 2 in the independence case was achieved 
first by W. L. Smith [4]. 

The converse proposition to Theorem 1 is as follows. 

THEOREM 3. Suppose £(-log(l-<fo0(0)))< 00 and JE(log #0(1))-
<E[ log# 0 ( l ) ]+g 00. 77^P(<z(r)<l) = l. 

In summary, modulo mild integrability conditions extinction is 
certain iff E (log #0(1)) ^ 0 . 

The conclusions of Theorems 1 and 3 persist in the circumstance 
where f » is not ergodic but unfolds as a positive recurrent irreducible 
Markov chain allowing a general state space. 

It is not evident in the stationary case that 

(13) P{Zn->0 or 00} = 1 

while this relation manifestly prevails in the independence case since 
{Zn; w = 0, 1, 2, • • • } is a Markov chain and all states other than 0 
are transient. Nevertheless, (13) does hold in the stationary case. The 
validity of (13) is established with the aid of the following theorem. 

THEOREM 4. Let {fo, i>0} be a stationary ergodic process. Then 
(i) limttH,oo0rotorx( * • " (4>u(s)) * ' ' )=2(?) f0r 0 g s < l a.s. and 
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(ii) there is at most one solution TTQ) of the functional equation 

*(?) = *r.(x(2T)) a.s. 

satisfying P(TT(?)< 1) = 1. 

It can be proved that (i) implies (13). 
The B.P.R.E. will be labeled supercritical, critical, or subcritical 

according as E log <£f0(l)>0, =0 or <0 respectively. The limit 
theorems of the classical Galton-Watson case are generalized as 
follows. 

SUPERCRITICAL CASE. In complete analogy with the theorem of 
Kesten and Stigum [3] on the supercritical Galton-Watson process 
we obtain 

THEOREM 5. Let Wn^ZnP'1 where f or n^l, P»= H Ë o ^ f / l - ) 
and Po = Zo = l. Then, the family {Wn; Fn,«(?); w = 0, 1,2, • • • } is a 
nonnegative martingale and hence limn-*oo Wn = W exists a.s. Suppose, 
in addition that 

(14) E |(^0(1))-1 Z PhW logy} < « • 

Then 
(i) Hindoo E(e-uWn\ F(f)) =^(w, f) where \[/(u, f) is the unique solu

tion of the functional equation 

*(«, f) - *r0 (V (-^— > Tf)) a.s. 
\ \^o(i) / / 

among those satisfying limM|0 w
-1 [l-~>p(u, ?)] = 1. 

(ii) E(W\F(f)) = l ondP(W=0\FQ))=q(f) a.s. 
The treatment of critical and subcritical cases in the context of 

B.P.R.E. need additional conditions on the environmental process 

{r#,*sso}. 
DEFINITION 1. The metrically transitive stationary process f< is 

said to be exchangeable if the vector random variables (f t-, f »-+i, • • • , 
f t-+n) and (fn+i, Tn+t-i» • • • i ft) are identically distributed for each 
i^OandwàO. 

When $**, t^O consists of i.i.d. random variables then f* is mani
festly an exchangeable process. Another example occurs where 
G"*, /^0) is a stationary reversible ergodic Markov chain. 

The following is the analogue of Yaglom's theorem for subcritical 
Galton-Watson processes (see [3]). 

THEOREM 6. Let (f e, / ̂  0) be an exchangeable process as in Definition 
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L Suppose E | log <££0(1)| < °°. In the subcritical B.P.R.E., i.e., where 
E(\og 0fo(l)) <0 holds, there exists a p.g.f. G(s, f) for a.e. f such that 

(IS) E ( H z n 5 * 0 , F ( ? ) ) - > G ( s , f ) 

as n—>oo where d means convergence in distribution. In the critical case, 
that is where £(log 0fo(l))=O, (IS) persists but G(s, f)sO a.s. 

The subcritical Galton-Watson process is characterized in that 
the mean number of progeny per parent is less than 1. The analog of 
this property in the B.P.R.E. case is the content of the following 
theorem. 

THEOREM 7. Let tu t^O be an exchangeable process. Suppose 
E\ -log(l~0 ro(O)| andE\\og4>'u(\)\ are finite. Then 

m .. 1 ~ <frn0frn-l( • * • (*T.(0)))) 
mis) — hm n-*«o 1 ~ *r.(*r^( • • • (*ti(0)))) 

exists and is g 1 a.s. The B.P.R.E. is subcritical iff P(f; m(f) <1)>0 . 

REMARK. Notice for the special case 4>t0(s)—<l>(s) a.s. that w(?) = 

In the subcritical case we have determined (subject to a 
mild moment condition) the exact rate of approach to zero of 
1 ~<̂ rn(<̂ fn~i( • • • (<fro(s) • • • ) ) ) which is the generalization of geo
metric ergodicity in the classical case. 

THEOREM 8. Assume JE(log <#o(l))+< °°» ^flog #0(1))~> 
E(log #o(l))+ and that (14) holds. Then a.s. 

(16) lim 1 - ^ - - ^ ) ) - - - ) = A($> ? ) 

exists and A(s, f)>0 for 0 ̂  s < 1. 

We finish with a result on the extinction probability problem for 
the multi-type (say £-types) B.P.R.E. model. To review quickly the 
formulation we have associated with each ? a ^-vector p.g.f. <i>r(s) 

3<Êf(l)/dsy||. We assume 
aij\. It was proved by 

-(*?(«), *?{*), • • • . *P«) . Let At~\ 
£|log||i4r||| < oo where ||il|| = max< X)J-i . ., 
Furstenburg and Kesten [2] that lining (1/n) logJÎ L^ • • • Aio\\ =TT 
exists w.p.l, TT<OO and also limn-co (l/w)£||log Açn • • • 4̂f0|| =7r. 
Clearly, for the one type process T — E log 0£o(l)« 

Criteria for extinction or nonextinction is the substance of the 
following theorem. 
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THEOREM 9. Let (£«, t*z0) be a process of i.i.d. random variables and 
let 4»r(s) be a p-vector p.g.f* Further assume 

(i) £ ( —log (1 — <j>r0(0) -v)) < oo for every vector vy>0, 
(ii) there exists Q<k<K<<n such that 

* fa; sup 
L J,l,m 

2 (ƒ) 

* «fro i 
dsidsn 

£ K, jfc^inf 
A1 

84** 

dsi s=*l 

â sup S if! - 1. 

Let g(f)=limn-oo 4>f0(4>ri> * * * » 4>rn(0), • • • ) denote the extinction 
probability vector. Then if ic<Q P ( g ( f ) « l ) — 1 <md if n>Q then 
P(g(f)<<Cl) = 1 . (r&£ notation x<&y for vectors signifies that every 
component of y—x is positive») 

Proofs and elaboration of the above results and others will appear 
elsewhere. 
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