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1. Nonlinear operators in a Banach lattice. We recall a Banach 
lattice is a Banach space X over the real numbers R, which is a lattice 
under the ordering â , satisfying for x, y, z in X and a^O in R, 

(1) x^y implies x+z^y+z, 
(2) xSy implies ax^ay, and 
(3) |* | â M implies J |* | | s | |y | | . 
Following [12] we write # + = sup(#, 0) and ar~ = sup(--x, 0), giving 

x = x+—x~ and \x\ =x++x~. A positive duality map / is a function 
from X to the dual X* with 

(1) (Jx, x)=\\x\\\ 

(2) ||J*HI*IL 
(3) ( J x , 3 / ) è 0 i f x ê 0 a n d y è 0 , a n d 
(4) ( /*,y)=0if*±y(i .e . inf( |* | l M ) = 0 ) . 
This was introduced in [ l0] . 

PROPOSITION 1.1. A Banach lattice has a positive duality map. 

If g is a convex real valued function on X, then the subgradient 
dg:X—» subsets of X* is defined by: w is a dg(x) iff for all u in X, 
g(u) *zg(x) + (w, u—x). A selection of a function F:X-+ subsets of Y 
is a function ƒ :X—» Y with ƒ (*) in ^(x) for * in X. 

PROPOSITION 1.2. If X is a Banach lattice with positive duality map 
J then y—>2J(y+) is a selection of the subgradient ofy-*\\y+\\2. 

In the following we study existence of properties of solutions x(f), 
tèz0, of the equation of evolution 

dx/dt (t) = — Ax(f), x(0) = #0 

for a given element x0 of D(A) C.X, where A \D(A)-*X is a nonlinear 
operator (i.e. a function). In §§1 and 2, the theory is similar to 
[$]> [4L [5]» [?]> [8], but is in the Banach lattice setting of [lO], 
[ l l ] . Important properties of A are as follows. See [ l ] for the similar 
concept of a T-monotone operator. 
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DEFINITION. Suppose X a Banach lattice with positive duality map 
J. A:D(A)-+X is: 

(a) T-accretive if (Ax—Ay, J((x—y)+))^0 for x, y in D(A), 
(b) generalised T-accretive if there exists k in R with 

(Ax - Ay, J((x - y)+)) Ê; - k\\(x - y)+\\2 for x, y in D(A), 

(c) locally generalised T-accretive if for z in D(A) there is kz, in R 
and a neighborhood Nz of z in X, with 

(Ax - Ay, J((x - y)+)) è - h\\(x - y)+\\2 for x, y in Nzr\ D(A). 

The importance of these definitions, and motivations, is the follow­
ing. Supposing solutions to the equation of evolution exist uniquely, 
for ^èO we have a function U(t) taking x0 to x(t). Then we have U(t) 
is a monotonie function, and if AXQ^Q then x(t) is increasing. We 
recall [9] a function U:D(U)—>X is monotonie if xSy, %, y in D(U) 
implies U(x)^U(y). 

DEFINITION. Supposing X is a Banach lattice, then U:D(U)-^X is: 
(a) T-nonexpansive if || (£/#-- Uy)+\\ g||(x—y)+\\ for x, y in D(U), 
(b) T-Lipschitz if there is k in R with \\(Ux- Uy)+\\ £k\\(x-y)+\\ 

forx,yinD(U), 
(c) locally T-Lipschitz if, for z in D(U), there is a neighborhood 

Nz of z in X, and kz in R, with \[(Ux— Uy)+\\ Skz\\(x —y)+\\ for x, y 
inNzr\D(U). 

PROPOSITION 1.3. A locally T-Lipschitz function U with convex 
domain is monotonie, A C1 function U with open domain is locally T-
Lipschitz. 

PROPOSITION 1.4. Suppose X a Banach lattice with positive duality 
map. If U:D(U)-J>X is T-nonexpansive, then I—U is T-accretive. If 
A:D(A)-+Xis T-accretive, then for all d>0, (I+dA)-1:R(I+dA)-^X 
is T-nonexpansive, and conversely if J is continuous from the strong 
to the weak* topology. 

PROPOSITION 1.5. Suppose X a Banach lattice with positive duality 
map, and A a hypermaximal T-accretive function, i.e. A:D(A)~~>X is 
T-accretive and R(I+A)**X. Then R(I+dA)~X for all d>0, and 
A(I+dA)~x is T-accretive and Lipschitzian from X to X. 

THEOREM 1.6. Suppose X is a Banach lattice with positive duality 
map. Suppose A :D(A)~**X is a function such that for x0 in D(A) there 
are strongly continuous weakly once differentiable solutions to dx/dt (i) 
= — Ax(t), with initial condition x(0) =x0, for t in an interval [0, h). 
For t*zO we say x is in D(U(t)) if h>t, and set U(t)x0= {x(t):x a 
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\(Ax(t))+\\^\\(Ax0)+\\, 
\(Ax(t))+\\ ^e^\\(Axo)+\\, where (Ax-Ay,J((x-y)+)) 
(x-y)+ | | 2 , or 
\(Ax(t))+\\^eK^\\(Axo)+\\ where (Ax-Ay,J((x-y)+)) 

solution as above}. Then for t^O, U(t) is: (a) a T-nonexpansive f unc­
tion, (b) a T-Lipschitz function or (c) a locally T-Lipschitz function, 
iff A is (a) T-accretive, (b) generalised T-accretive or (c) locally general­
ised T-accretive. 

In this case, we have 
(a) 
(b) 

(c) 
^ — &(:y)||(x— 30+ | |2 for x near y and K(t) =ƒ<$ k(x(s))ds. 

We recall [3] that U"*D(U)—s>X is nonexpansive if | |£ /*-£ /y | | 
^ | |x—y| | for x, y in D{U). A Banach lattice has property P [2] if 
a, b, c, d^Q, alb, c±d, | | c | |= | |c | | , and ||&|| HMI implies \\a+b\\ 
= \\c+d\\. 

PROPOSITION 1.7. Any Banach lattice has an equivalent norm in 
which T-nonexpansive functions are nonexpansive. Every T-nonexpan­
sive f unction U:D(U)—^X is nonexpansive iff X has property P. 

PROPOSITION 1.8. Suppose X an AL space with positive duality 
map {i.e., x^O, y^tO implies \\x+y\\ H M | + | M | ) . The fixed point set 
F(U) of a T-nonexpansive function U:X-*X is a sublattice of X. If 
A:D(A)—>X is hypermaximal T-accretive then A~l(x) is a sublattice 
for x in X. 

2. Existence of solution to equations of evolution. We recall a 
Banach space Y is uniformly convex if for e > 0 there exists d> 0 such 
that ||*|| â l » IMI^l» | | * + : y | | à 2 - d , implies | | f f -y | |<e . We say a 
function A is demicontinuous if it is continuous from the strong to 
the weak topology. 

THEOREM 2.1. Suppose X a Banach lattice with X* uniformly con­
vex. Suppose G open in X and Ai:G—>X is demicontinuous and locally 
generalised T-accretive. Suppose A2>D(A2)-^X is hypermaximal T-
accretive. Let A = Ai+A2, D(A) — D(A2)r\G. For xo in D(A) there is an 
interval [0, d] and a unique continuous weakly Cl function x: [0, d]—>X 
with x(0)=x0 and dx/dt (t) — — Ax(t). The strong derivative of x exists 
almost everywhere and equals ~Ax(t). 

THEOREM 2.2. Suppose X a Banach lattice with positive duality map. 
Suppose G open in X and A : G—>X is locally generalised T-accretive 
and locally uniformly continuous (each point of G has a neighborhood 
on which A is uniformly continuous). Then for x0 in G there is an inter­
val [0, d] and a unique strongly Cl function x: [0, d\-~*X with x(0) =#o 
and dx/dt — —Ax(t). 
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THEOREM 2.3. Suppose X a Banach lattice with X* uniformly con­
vex, A\\X-*X is demicontinuous and T-accretive, A2\D(A2)-±X and 
Az:D(Az)—>X are hypermaximal T-accretive, with D{A^)CiD(Az). 
Suppose f or x in X there is a neighborhood Nx of x, kx < 1, hx in R, with 
\\Azy\\skx\\Azy\\+hx for y in D(A2)C\NX. Then ^ = ^ 1 + ^ 2 + ^ 3 is 
hypermaximal T-accretive. 

3. The range of A. 

THEOREM 3.1. Let X be a Banach lattice with X* uniformly convex. 
Let A\\D(A<ù~+X be hypermaximal T-accretive. Let A2\X-^X be 
demicontinuous and locally generalised T-accretive. Let A=Ai+A2; 
D{A)=D{AX). 

Suppose either (a) for a,b in X {xla^xandAx^b} and{xla^xand 
Ax^b] are bounded, or 

(b) A is T-accretive outside a bounded set and A"1 is bounded. 
Then A is surjective, and A"1 has a monotonie selection. Furthermore, 

if there exist x, y with Ax Sx SyS Ay, then there is a fixed point of A 
in [x, y]. 

THEOREM 3.2. Let X be a Banach lattice with positive duality map. 
Suppose X is fully regular, i.e. any bounded set directed under S is 
convergent [9], 

Suppose A:D(A)—>X is hypermaximal T-accretive, and A"1 is 
locally bounded. Then A is surjective, and A"1 is monotonie if it is single 
valued and demicontinuous. 

THEOREM 3.3. Suppose X an order complete Banach lattice with 
positive duality map (i.e. if AC.X is order bounded then sup(A) and 
mi (A) exist). (A is order bounded means it is contained in an order 
interval [a, b]={x in XlaSxSb}.) Suppose A:X—>X is locally 
uniformly continuous and locally generalised T-accretive. Then for 
aSbinX, [A(a), A(b)]CA [a, b]. 

THEOREM 3.4. Suppose X an order complete Banach lattice with 
positive duality map whose positive cone {x in X:x^0\ has nonempty 
interior. Suppose A:D(A)—>X is hypermaximal T-accretive and A*1 

is locally bounded. Then A is surjective. 

THEOREM 3.5, Suppose G a closed bounded convex subset of a reflexive 
Banach lattice X. Let Be(G)~ {xin X:d(x} G) Se). Suppose U:Be(G) 
—>X is locally T-Lipschitz with Ux in G if d(x, G)=e. Then 
(l-U)Be(G) is closed. 
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COROLLARY. Suppose U as above is T-nonexpansive. Then U has a 
fixed point in G. 

4. Ergodic theory. 

THEOREM 4.1. Suppose X is a uniformly convex Banach lattice with 
positive cone K. Suppose UlK—tK is nonlinear, and Ux^Wx for x 
in K, where W is linear and T-nonexpansive. Then for x in K, Snx 
==w~1X)?-i U*(x) converges to x0 in K. The f unction S0:K—>K taking 
x to Xo satisfies SoUx = Soxè USoXèSix = S£x, n^2,if U is continuous 
and monotonie y and the range of Si is the fixed point set of U. 

THEOREM 4.2. Suppose X is a Banach lattice with X and X* uni­
formly convex. Suppose A :D(A)—*X is the sum of a hypermaximal T-
accretive and a demicontinuous generalised T-accretive function, and 
i l(0)=0. 

Suppose B:D(B)—^X is linear and hypermaximal T-accretive. Sup­
pose D(B)CD(A). Suppose for in KC\D(B) we have Ax^Bx. For x0 

in D(A), define U(t)xo = x(t) for t^O, where x(0)=x0, (dx/dt) (t) 
= —Ax(t), and extend U(t) by continuity to K. Then for z in K, 
St(z) =t~1ft

0 U(t)z converges to z0 in KC\D(A), with A(z0)^0. 

5. Some further developments. The author has developed some 
results for monotonie generators, and also obtained results for X an 
algebra. The following are examples. 

THEOREM 5.1. Suppose X an order complete Banach lattice. Suppose 
B:G-»X is monotonie and continuous, G open in X. Suppose each 
point has a neighborhood N with B(N) order bounded. Then f or XQ in 
G there is an interval [0, d] and a strongly Clfunction x: [0, d]—>X with 
x(0) =xQ and (dx/dt) (t) = Bx(t). 

THEOREM 5.2. Suppose X is the dual of an AL space. Suppose 
T:D(T)->X satisfies R(1 + T)=X and (Tx-Ty)(x-y)^0 for x, y 
in D(T) (cf. [6]). Then for x0 in D(T) there exists a unique continuous 
weak * C1 functionx: [0, <*> )—»X, withx(0) =x0, and (dx/dt) (t) = — Tx(t). 

These results will appear with proofs elsewhere. The author is 
very grateful to Professor Felix Browder for introducing him to 
semigroups of nonlinear operators, and to Dr. Peter Hess for help 
with presentation of this work as part of a thesis. 
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