ALGEBRAIC COHOMOLOGY OF TOPOLOGICAL GROUPS

BY DAVID WIGNER

Communicated by David Buchsbaum, December 24, 1969

In this note we discuss algebraic cohomology groups of topological groups. Eilenberg-Maclane [3] and Hopf [6] introduced the notion of algebraic cohomology of abstract groups, and definitions taking into account the topology are given in [2], [4], [5], and [8]. We give a definition which coincides with the usual one for discrete groups and generalizes those in [2], [5] and [8] for topological groups. It has the good functorial properties of being an "exact connected sequence of functors" in a suitable sense, and of being effaceable and universal.

All groups and modules considered will be Hausdorff.

The classical theory assigns to an abstract group G and a Gmodule A an exact connected sequence of functors $H^i(G, A)$ $(0 \le i < \infty)$. It can be shown that this sequence is universal and effaceable, and for any other effaceable exact connected sequence of functors \check{H} with $\check{H}^0(G, A) \cong H^0(G, A)$ for all A, one has $\check{H}^i(G, A)$ $\cong H^i(G, A)$ for all i by Buchsbaum's criterion.

If G is a topological group, a topological G-module A will mean an abelian topological group A with a jointly continuous action of G satisfying g(a+a') = ga+ga', (gg')a = g(g'a), la = a. We show that topological G-modules form a quasi-abelian category in the sense of Yoneda [9], and define $H^i(G, A) = \text{Ext}^i(Z, A)$ where Ext is given by the definition of Yoneda for the quasi-abelian category of topological G-modules. $H^0(G, A)$ will then be the abstract group of points of A fixed under the action of G. If the underlying spaces of all groups and modules in question are limits of sequences of compact sets, we show that H^1 and H^2 have the obvious interpretations in terms of continuous crossed homomorphisms and extensions of topological groups.

Yoneda shows that with the appropriate definitions the Extⁱ form an effaceable exact connected sequence of functors; one can further show that they are universal and prove a modified form of Buchsbaum's criterion. The "bar construction" semisimplicial resolution of an abstract group G [7] becomes a semisimplicial space in an obvious way if G is a topological group. If A is a G-module consider the sheaf of germs of A-valued functions on each space of this semisimplicial resolution. The canonical resolutions of these sheaves give rise to a

AMS Subject Classifications. Primary 2210.

Key Words and Phrases. Cohomology group, Lie algebra, classifying space of a topological group.

DAVID WIGNER

double complex. $\hat{H}^{i}(G, A)$ will denote the *i*th cohomology group of this double complex. We then have:

THEOREM. If G is locally compact, σ -compact and finite dimensional or a countable CW-complex and A is complete metric and either locally connected or locally compact, then $H^i(G, A) = \hat{H}^i(G, A)$.

THEOREM. Suppose G is as in the previous theorem. If A is discrete, Hⁱ(G, A) is isomorphic to the cohomology Hⁱ(B_G, A) of the classifying space B_G with coefficients in A.

THEOREM. If G is a connected Lie group, and A a finite dimensional vector space which is a differentiable G-module, then $H^{i}(G, A) \cong H^{i}_{\text{Lie}}(G, \mathfrak{K}, A)$; the latter is the cohomology of the Lie algebra G of G modulo the Lie algebra \mathfrak{K} of a maximal compact subgroup.

References

1. D. A. Buchsbaum, Satellites and universal functors, Ann. of Math. (2) 71 (1960), 199-209. MR 22 #3751.

2. A. Douady, "Cohomologie des groupes compacts totalement discontinus," Séminaire Bourbaki, 1959/60, exposé 189, Secrétariat mathématique, Paris, 1960. MR 23 #A2273.

3. S. Eilenberg and S. Maclane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. U.S.A. 29 (1943), 155–158. MR 4, 224; MR 5, 328.

4. I. M. Gel'fand and D. B. Fuks, Topology of noncompact Lie groups, Funkcional. Anal. i Priložen. 1 (1967), no. 4, 33-45 = Functional Anal. Appl. 1 (1967), 285-295. MR 37 #2253.

5. G. P. Hochschild and G. D. Mostow, Cohomology of Lie groups, Illinois J. Math. 6 (1962), 367-401. MR 26 #5092.

6. H. Hopf, Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören, Comment. Math. Helv. 17 (1945), 39-79. MR 6, 279.

7. S. MacLane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York and Springer-Verlag, Berlin and New York, 1963. MR 28 #122.

8. C. C. Moore, Extensions and low dimensional cohomology theory of locally compact groups. I, II, Trans. Amer. Math. Soc. 113 (1964), 40–86. MR 30 #2106.

9. N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507-576. MR 37 #1445.

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305

826