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Let {Xni n^l} be a sequence of independent identically distri­
buted random variables which take values in the d-dimensional 
integer lattice Ed. The sequence S» defined by S0 = 0, Sn = X)*-i-^* 
for n*z 1 is called a random walk. If the distribution of the Xn assigns 
mass (2d)"-1 to each of the 2d neighbors of the origin, it is called 
simple random walk. Let p~P[Si5^0, S2^0, • • • ]; the random 
walk is called transient if p is positive and recurrent otherwise. The 
random walk may take place on a proper subgroup of E&. In this case, 
the subgroup is isomorphic to some Ekl k Sd\ if k<d, then we should 
consider the problem in k dimensions. With this understanding, ran­
dom walks with summands having mean zero and finite variance are 
transient if and only if d^3 [3]. 

Let Rn denote the cardinality of the set {S0, Si, • • • , Sn} ; Rn is 
called the range of the random walk (up to time n). Dvoretzky and 
Erdös [l] proved for simple random walk with d*z2 that Rn/ERn-+l 
with probability one. In the course of their investigation, they ob­
tained the estimate Var Rn = 0(n) for d à 5. Jain and Orey considered 
the range of strongly transient random walk in [2]. (Random walks 
with summands having mean zero and finite variance are strongly 
transient if and only if d*£ 5.) They proved that if p< 1 and the ran­
dom walk is strongly transient, then Var Rn^e^n for some positive 
constant a2 and also that Rn obeys the central limit theorem. The 
case p = l is uninteresting since then i?„ = w + l almost surely. 

We shall consider these problems for general random walk in three 
and four dimensions. The bounds that Dvoretzky and Erdös obtained 
here were Var Rn = 0(n log n) if <Z = 4 and Var i?„ = 0(w3/2) if d = 3. 
We have improved these bounds to 0(n) and 0(n log n) respectively. 
Furthermore, we have proved that there is a positive constant <r2 

(which may depend on the distribution of the summands) such that 
Var Rn^v^n if d = 4, while Var Rn~<r2n log n if d = 3. (The result for 
d = 3 is only for the case where the summands have mean zero and 
finite variance.) With the asymptotic behavior of the variance avail­
able, we are then able to prove the central limit theorem. 
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THEOREM 1. Let Rn be the range of a random walk whose {genuine) 
dimension is at least f our and p<l. Then there is a positive constant 
a2 such that Var Rn~a2n and {Rn—np)/^/n<r converges in distribution 
to the normal with mean 0 and variance 1. 

THEOREM 2. Let Rn be the range of a random walk with {genuine) 
dimension three, p<l, and with summands having mean zero and finite 
variance. Then there is a positive constant <r2 such that Var Rn~<r2n log n 
and {Rn—np)/{n log n)ll2<r converges in distribution to the normal with 
mean 0 and variance 1. 

The situation in three dimensions is particularly interesting. If we 
write Rn— XXo Zk where Z* is the indicator of the event that a new 
lattice point is visited at time k, then we see that i?» is the sum of 
n+1 zero-one random variables. They are neither independent nor 
identically distributed. In fact, there is enough dependence to make 
the variance grow like n log n and yet the central limit theorem 
applies. 

The proofs will appear elsewhere but we will give a brief indication 
of what is involved. In the four dimensional case, the main problem is 
to get the asymptotic estimate for the variance. This is a somewhat 
different problem than in higher dimensions but is fairly straight­
forward and relies only on the uniform estimate Pn(0, x)^>An~~2. 
Once the variance estimate is obtained, a somewhat simpler version of 
the blocking technique used in [2] can be applied along with the 
Lindeberg Theorem for triangular arrays. In three dimensions the 
estimation of the variance is more delicate and we make use of the 
asymptotic behavior of the Green function [3]. The Lindeberg 
Theorem is used once more, but in this case the condition is far more 
difficult to check due to the faster growth of the variance. In order to 
get the necessary bound, we have been forced to estimate 
the fourth central moment of 2?». The estimate obtained is 
E(Rn—ERny=*0(n2 log2 n). The same care needed in the variance 
estimate is also needed here, and since there are so many more terms 
involved the computation is extremely long. 
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