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In this paper we consider a relatively simple problem to illustrate 
a method for treating nonlinear dynamic stability problems. This 
method is believed to be the first to treat arbitrary, though small, 
initial perturbations. Specifically, we consider 

(1) — Ut + Uxx = V(«) for 0 < X < 7T, / > 0 

subject to the boundary conditions 

(2) M = 0 at « = 0,5T 

and the initial condition 

(3) u(x, 0; c) = h(x; e) ~ eh(x). 

Here the symbol ~ denotes asymptotic equivalence, and e is a small 
parameter to be defined below. We assume that ƒ (u) can be expanded 
in a Taylor series in u about w = 0 with /(O) = 0 /'(O) <0 , /"(O) = 0 , 
/ " (O) > 0 , and that ft(0) = i W = 0 . 

This problem is as a mathematical model for the temperature 
distribution in a bar with a nonlinear heat source of magnitude 
—X/(w), on the boundary of which the temperature is prescribed to 
be zero. We wish to study the stability of the equilibrium temperature 
distribution u0^0. To do so, we must determine whether it can sus­
tain itself against perturbations (to which all physical systems are 
subjected). Tha t is, we must see whether all perturbations decay to 
zero, or whether some perturbations grow (perhaps into new sta­
tionary (time independent) solutions of (1)~(2)). Therefore we study 
the time development of the solution with initial condition h(x) 
representing the perturbation. The stability of solutions UojéO, and 
satisfying nonhomogeneous boundary conditions, is treated in similar 
fashion by considering the problem for Ü — U—UQ, 
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1 Another version [l ] of the method presented in this paper, was delivered at the 

S.I.A.M. Conference on Qualitative Theory of Differential and Integral Equations 
held at Madison, Wisconsin in August 1968. 
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The time independent form of (l)-(2) is a nonlinear eigenvalue 
problem 

(4) vxx = Xf(v) 0 < x < ir 

(5) n = 0 a t x = 0,5T 

whose solutions are stationary or steady state solutions of ( l ) - (2) . 
I t can be shown that the solution w0 = 0 is stable if X is less than a 
critical value Xc, and unstable for X greater than Xc. This is related to 
the fact that for X <XC, v = 0 is the unique solution of (4)-(5), and that 
a new solution of (3)-(4) branches off or bifurcates from z/ = 0 at 
X=XC. We shall examine the post critical (X>XC) behavior of u in a 
neighborhood of X=XC. Tha t is, for X>XC, we consider the evolution 
in time of an initial perturbation of Uo^O. In particular we wish to 
determine whether the perturbation grows into the nontrivial solu­
tion (4)-(5). We are interested in the dependence of the solution u 
on the parameter X in a neighborhood of X=XC, and derive a formal 
asymptotic representation for u in powers of a small parameter €, 
related to X—Xc (alternatively, a norm of u). Our method provides 
for the systematic determination of all the terms in that expansion 
and is presumably valid uniformly for all time. When specialized to 
the steady state, our results are in agreement with those obtained by 
Millman and Keller [3], who used a parametric expansion to study 
the time independent problem. 

The essential feature of the theory is the scaling of the time vari­
able. To find the asymptotic expansion of the solution, any of the 
standard techniques may be used e.g., stretching and matching, two 
timing, multiple timing, etc. In this paper we employ the two timing 
technique, while in another paper [ l ] , in which we consider a model 
problem arising in Fluid Dynamics, we use the stretching and match­
ing technique of boundary layer theory to derive inner, outer and 
uniform expansions. In some problems (e.g., [l]) there is freedom of 
choice in the procedure to be adopted, while in others, the proce­
dure is dictated by the nature of the problem (see e.g., Reiss and 
Matkowsky [2], for a problem where the matching technique cannot 
be used). 

As a first at tempt at solving the problem (l)-(3), we neglect the 
nonlinear part of f(u) in (1), and consider the resulting linear prob­
lem. This analysis may be thought of as having validity for infini­
tesimal perturbations, and for small time. Thus linearizing (1) we 
obtain 

(6) — ut + uxx - \f(Q)u = 0 for 0 < % < TT, / > 0. 
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The solution of (6), (2), and (3) is 

(7) u(x, t; e) ~ € 2^ hne
Cnt sin nx + 0(e2) 

where 

(8) ( rn==( rn(X) = - / ' ( 0 ) ( X - X w ) 

with 

(9) xn = - »y/(0), 

and hn are determined from the Fourier representation 

(10) h(x) = ^ hnsinnx. 

Now uo = 0 is stable or unstable according a s o ^ O . Thus, the thresh­
old of instability occurs for the smallest X such that <7 = 0, so that 

(11) Xc = minXn = - l / / ' (0) . 

We note that for X <XC, all the <r» are negative, and the perturbation 
decays to zero. If X is slightly greater than Xc, <7i> 0, but all the other 
crn<0. Thus the linear theory predicts stability for X<XC, and in­
stability for X>XC. For X>XC, the perturbation will grow exponen­
tially in time with a growth rate proportional to X—Xc. Clearly, this 
exponentially growing "solution" according to the linear theory, 
cannot represent the actual solution for very long, for it will soon 
grow sufficiently large so tha t the nonlinear terms become important. 
Then a nonlinear analysis becomes necessary. 

In our nonlinear analysis, we shall consider three relevant time 
regions. The first, which we denote by /, is an initial time region, in 
which the solution begins to develop from the initial perturbation. 
Here we expect the linear theory to be valid. The second region, de­
noted by r, is one in which nonlinear effects become important, and 
the solution continues to evolve in time until it approaches the steady 
state which is the third region, reached in the limit as r becomes infi­
nite. 

Since we are examining the stability of u0 — 0 in a neighborhood of 
X=Xc, it is natural to expand about these quantities. Therefore, we 
define € by the relationship 

(12) e2 s X - Xc. 

The parameter e is thus a measure of the nearness of X to Xc. We intro­
duce the variable r by setting 
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(13) r = e% 

and assume that 

(14) u(x, t\ e) ~ ]T) wj(x> tj T) *j 

where each w3' is a bounded function of each of its arguments. Insert­
ing (12), (13) and (14) into (1), and setting the coefficient of each 
power of e to zero, we obtain a recursive system of equations for the 
determination of the functions w7'. 

(15) L\cw E= — wt + wxx — Xcf(0)w = 0, 

(16) Ucw = 0, 

(17) U/ = wl + ( A c / " W ó ) {w f + f'(0)w 

or in general 

(18) LKw> = r3{w\ • • • ,w*~2). 

A general expression for the right-hand side r,- of (18) can be written 
down, though we do not do so here. In a similar manner, by employ­
ing (14) in (2) and (3) we obtain the boundary and initial conditions 
for this system as 

(19) W9 = o at x = 0, T (j = 1, 2, 3, • • • ) 

and 

(20a) w\x, 0) = h(x), 

(20b) w*(x, 0) = 0 (j > 1). 

Equations (17) and (18) are inhomogeneous forms of (15). Since (15) 
subject to (19) with j = l possesses nontrivial solutions, a necessary 
condition for bounded solutions of (17) and (18) to exist is that their 
right-hand sides satisfy the orthogonality relations 

1 rT C* 
(21) (w\ rk) = lim — I I wxrkdxdt - 0 (k = 2, 3, 4, • • • ). 

T-> oo T t/ o J o 

The solution w1 of (15) and (19) with 7 = 1, is given by 

(22) w1 = ^2 Anföe**^* sin nx, 
n=l 

where the functions Al
n{r) are as yet undetermined. Using the result 

tha t 
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(23) eri(X«) - 0, 

we write (22) as 

(24) w = AI(T) sin x + ]T) Anföe"»^* sin nx. 
n==2 

We note that 

(25) <rn(Àc) < 0 (» = 2, 3, • • • ) 

so that all the terms occurring in ^ in (24), decay exponentially in 
time. Similarly, the solution w2 of (16) and (19) with j = 2 is 

2 2 .M , 2 

(26) w = AI(T) sin x + 2J ^ n W ^ " ^ 1 sin w#. 
n=2 

The orthogonality relation (21) with k = 3, implies that 

(27) i ! +f'(0)A\ + ( X c / " W 8 ) U Î ) 3 = 0. 

Here ' denotes differentiation with respect to r. The solution of this 
first order nonlinear ordinary differential equation for the amplitude 
function A\(T) is 

i / - 8 / ( 0 ) \ 1 / 2 

(28) Axir) = + ( — ) e-''«>>', 

or using (11), we have that 

i / 8(/(0))2 V ' 2 

(29) A\(T) = ± ( ^ - ^ ) e-f'W*. 

The constant c is determined by the initial condition for ^4}(0), which 
by (20a) and (10) is 

(30) A\(0) = hi. 

Thus c is given by 

(3D c = /"(0)/(8f(0)) - /(0)/(*0*. 

We note that as r becomes infinite, A\{r) approaches the constant 
— (Ai/ |Ai|)(8// / / /(0))1 / 2 / ,(°)> SO that the leading term of the expan­
sion describes a stationary state, whose dependence on the initial data 
is one of sign only. Higher order terms w* in the expansion can 
be determined similarly. Each wi contains an amplitude function A{ 
which is a solution of the first order linear ordinary differential 
equation 
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(32) A[ + (/'(O) + (3Xe/'"(0) /8)A\(T) 2)A\ = R§. 

This equation is obtained from the orthogonality relation (21) with 
k=j+2. Then each A{(r) will be determined by an initial condition 
which follows from (20b) and (10). Now we find that as r becomes 
infinite, the coefficient of each A{ in (32) approaches the positive 
constant — 2/'(0), so that in the steady state each A{ approaches a 
constant which depends only on the steady state value of A\{r). Thus, 
in the limit as r becomes infinite, the entire expansion, and not just 
its leading term, describes a stationary state, and this stationary state 
is independent of the initial perturbation. 

We further note that the stability of the new stationary solutions 
can be determined by this method, without recourse to an additional 
perturbation analysis. Thus from (27) we see that for |^4l(r)| less 
(greater) than its steady state value, À] is positive (negative), so that 
A\ will increase (decrease) to the stationary state. This is a statement 
of the stability of the stationary states. This result agrees with that 
of Millman and Keller [3], who first obtained the stationary states 
by a perturbation analysis, and then considered a linear stability 
analysis of those states. 

I t should be mentioned that in the model problem, Xc is a simple 
eigenvalue. I t is for this reason that at each stage in the recursive 
determination of w\ the orthogonality condition yields a single differ­
ential equation for the amplitude function A[. In other problems, if 
the multiplicity of Xc is M, then at each stage of the recursive scheme, 
there will be M orthogonality conditions for the determination of M 
amplitude functions. Problems with multiple eigenvalues are con­
siderably more difficult than those with simple eigenvalues. Finally, 
we mention that our method seems to enjoy certain advantages over 
existing methods. These are discussed in detail in [l ]. 

The author is indebted to Professor L. Rubenfeld for a number of 
helpful discussions. 
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