AXIOM A+NO CYCLES $\Rightarrow \zeta_f(t)$ RATIONAL

BY JOHN GUCKENHEIMER

Communicated by Richard Palais, December 1, 1969

Throughout, $f: M \rightarrow M$ is a smooth diffeomorphism of a compact C^{∞} manifold without boundary.

Let N_i denote the number of fixed points of f^i . Then

DEFINITION. $\zeta_f(t) = \exp \sum_{i=1}^{\infty} N_i t^i / i$ (as a formal power series in t). This definition, due to Artin-Mazur [1], is inspired by Weil's zeta function for a variety defined over a finite field [6]. For the connection of Weil's zeta function with the Riemann zeta function, see [3].

Recall the following definitions from Differentiable dynamical systems [4].

DEFINITION. $x \in M$ is nonwandering if for every neighborhood U of x, there is an n > 0 such that $f^n(U) \cap U \neq \emptyset$. $\Omega(f) = \Omega$ is the set of nonwandering points of f. Ω is closed.

DEFINITION. f satisfies Axiom A if $T_{\Omega}(M)$ has a continuous splitting $T_{\Omega}(M) = E^s + E^u$, invariant under Tf, such that there exist positive constants c, λ , $\lambda < 1$ satisfying the inequalities

$$||Tf^n\nu|| \le c\lambda^n ||\nu|| \quad \text{if } n > 0 \quad \text{and} \quad \nu \in E^{\bullet},$$

$$||Tf^n\nu|| \ge c\lambda^{-n} ||\nu|| \quad \text{if } n > 0 \quad \text{and} \quad \nu \in E^{u}.$$

Furthermore, it is assumed that the periodic points of f are dense in Ω .

If f satisfies Axiom A, then $\Omega = \Omega_1 \cup \cdots \cup \Omega_k$ where Ω_i is invariant under f and $f | \Omega_i$ is topologically transitive. Define the relation \geq by $\Omega_i \geq \Omega_j$ if $W^u(\Omega_i) \cap W^s(\Omega_j) \neq \emptyset$. Here $W^u(\Omega_i)$ is the set of points tending toward Ω_i under negative iteration; $W^s(\Omega_i)$ is the set of points tending toward Ω_j under iteration.

DEFINITION. If f satisfies Axiom A and the relation \geq defined above is a partial ordering, then f is said to have the *No Cycle Property*.

The purpose of this paper is to prove the following:

THEOREM. If f satisfies Axiom A and the No Cycle Property, then $\zeta_f(t)$ is rational.

The basic idea of the proof is due to Williams [7]. As a preliminary,

AMS Subject Classifications. Primary 3465, 5536, 5750.

Key Words and Phrases. Dynamical systems, periodic points, zeta functions for diffeomorphisms.

recall the following well-known lemma about formal power series.

LEMMA. $\exp(\sum N_i t^i/i)$ is a rational function of t if and only if there exist integral matrices A and B such that $N_i = \operatorname{Tr} A^i - \operatorname{Tr} B^i$.

Proof. See Williams [8].

Also recall the Lefschetz trace formula [2]: if X is a Euclidean neighborhood retract with boundary and $g:X\to X$ is a continuous map with image in the interior of X, then

$$\sum_{p \in fix g} L(p) = \sum_{i} (-1)^{i} \operatorname{Tr} g * i.$$

Here fix g is the set of fixed points of g, L(p) is the index of g at p, g_*i is the induced map of $H_i(X; Q)$.

PROPOSITION (SMALE [4]). If $f: M \to M$ satisfies Axiom A and p is a fixed point of f then $L(p) = (-1)^u \Delta$ where $u = \dim E_p^u$ and $\Delta = +1$ or -1 as $Tf|_{E_p^u}$ preserves or reverses orientation respectively.

The reader is advised to compare our proof of the theorem with Williams' proof that the zeta function of an attractor is rational [7].

PROOF OF THEOREM. Let Ω_0 be one of the closed invariant subsets of Ω on which f is topologically transitive. We show that $f|\Omega_0$ has a rational zeta function. Lemma 4.1 of [5] shows that we can find an arbitrarily small neighbourhood U of Ω_0 and an open set U_0 such that

- (1) U and U_0 have smooth boundaries,
- (2) $f(\overline{U} \cup \overline{U}) \subset U \cup U_0$,
- (3) $f(U_0) \subset U_0$,
- (4) $\overline{U}_0 \cap \Omega_0 = \emptyset$.

In particular we choose U, U_0 as above so that the bundle $E^u \mid \Omega_i$ has a continuous extension to \overline{U} .

Set $V = \overline{U} - (U_0 \cap U)$. V is a compact neighborhood of Ω_0 and there is a continuous extension of $E^u | \Omega_0$ to V, which we again denote E^u . There is a double cover $\pi \colon \widetilde{V} \to V$ such that the bundle \widetilde{E}^u induced by π from E^n is orientable over \widetilde{V} . (\widetilde{V} is constructed so that its fundamental group is the largest subgroup of $\pi_1(V)$ which preserves the orientation of E^u over V. See Williams [7] again.) \widetilde{V} is chosen so that the fibers of \widetilde{E}^u over the two points in a fiber of $\pi \colon \widetilde{V} \to V$ have the opposite orientation.

Next define the quotient space $W = \tilde{V} \cup \overline{U}_0 / \sim$ where \sim identifies x, y and $\pi(x) = \pi(y)$ if x and y lie in the same fiber of \tilde{V} over $\partial U \cap \partial U_0$. Define the map $T: W \rightarrow W$ by $T \mid \overline{U}_0 = \text{identity}$ and $T \mid \tilde{V}$ is the map which interchanges the two points in a fiber of π . f lifts to a map $\tilde{f}: W \rightarrow W$ defined by

- (1) $\tilde{f} | \overline{U}_0 = f | \overline{U}_0$, and
- (2) $\tilde{f}: \tilde{V} \to W$ is the map covering $f: V \to W$ which preserves the orientation of \tilde{E}^n .

f also lifts to the map $T\tilde{f}$. Note that if $p \in \Omega_0$ is a fixed point of f^i , then $L(p) = (-1)^u$ for \tilde{f}^i and $L(p) = (-1)^{u+1}$ for $T\tilde{f}^i$ by the proposition stated above. We now apply the Lefschetz trace formula to \tilde{f}^i and $T\tilde{f}^i$:

(*)
$$\sum_{p \in fix} \tilde{f}^{i} L(p) - \sum_{p \in fix} T\tilde{f}^{i} L(p) = \sum_{j} (-1)^{j} \operatorname{Tr} \tilde{f}^{i}_{*j} - \sum_{j} (-1)^{j} \operatorname{Tr} T\tilde{f}^{i}_{*j}$$
.

By observing that $(T\tilde{f}_*^i) = T_*(\tilde{f}_*^i)$ we conclude that there are integral matrices A and B such that the right-hand side of (*) is equal to $\operatorname{Tr} A^i - \operatorname{Tr} B^i$ for all i. Again Williams [7] has more detail. On the other hand, since $\tilde{f}^i \mid U_0 = T\tilde{f}^i \mid U_0$, the left side of (*) is equal to $(-1)^u$ (# fixed points of $\tilde{f}^i + \#$ fixed points of $T\tilde{f}^i$). Over each fixed point of $T\tilde{f}^i$ in $T\tilde{f}^i$ has two fixed points. Therefore

(# fixed points of $f^i | \Omega_0 = (-1/2)^u$ (# fixed points of $\tilde{f}^i | \tilde{V}^+$ # fixed points of $T\tilde{f}^i | \tilde{V}$). Hence there are integral matrices A and B such that

(# fixed points of
$$f^i \mid \Omega_0$$
) = Tr A^i - Tr B^i ,

proving that the zeta function of $f|\Omega_0$ is rational. Because the spectral decomposition of $\Omega = \Omega_1 \cup \cdots \cup \Omega_k$ into topologically transitive pieces is finite, and because $\zeta_f(t) = \prod_i \zeta_f |\Omega_i(t)$, this suffices to prove the theorem.

BIBLIOGRAPHY

- 1. M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99 MR 31 #754.
- 2. A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1-8. MR 33 #1850.
- 3. J. Serre, Rationalité der fonctions & des variétés algebriques, Seminàire Bourbaki, (1959/60) fasc. 2, exposes 198, Secrétatiat mathématique, Paris, 1960. MR 23 #A2273.
- 4. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598.
 - 5. ——, Ω-stability theorem, Proc. Sympos. Pure Math. 14 (1970), 289-297.
- 6. A. Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497-508. MR 10, 592.
- 7. R. F. Williams, *The zeta function of an attractor*, Conference on the Topology of Manifolds (Michigan State University, E. Lansing, Mich., 1967) Prindle, Weber & Schmidt, Boston, Mass., 1968, pp. 155-161. MR 38 #3877.
- 8. ——, One-dimensional non-wandering sets, Topology 6 (1967), 473-487. MR 36 #897.

University of Warwick, Coventry, England