BOUNDING IMMERSIONS OF CODIMENSION 1 IN THE EUCLIDEAN SPACE

BY ANDRÉ GRAMAIN

Communicated by Emery Thomas, August 4, 1969

Let M be an (n+1)-dimensional differentiable manifold without boundary (compact or not) and $f: V \to M$ an immersion of the compact n-dimensional manifold without boundary V. We say that f is a bounding immersion if there is a manifold W^{n+1} with boundary dW = V, and an immersion $g: W \to M$ such that $f = g \mid V$. If M and V are oriented, then V must be the oriented boundary of the oriented manifold W, and g an oriented immersion of codimension 0.

Using the classification of immersions (Smale [7], Hirsch [2]) and the work of Kervaire-Milnor [3], [4], we compute in this note the regular homotopy classes of all bounding immersions of the sphere S^n into the euclidean space R^{n+1} and into the sphere S^{n+1} .

1. Statement of the results. From [2] we know that the derivation $f \mapsto T(f)$ defines a weak homotopy equivalence between the space Imm(V, M) of the immersions of V into M and the space of the fibremaps of the tangent bundle T(V) into the tangent bundle T(M) which are injective in each fibre. If $V = S^n$ and $M = R^{n+1}$, the set of connected components of this last space is an homogeneous space under the group $\pi_n(SO(n+1))$. By a convenient identification, we obtain a bijection $\gamma:\pi_0(Imm(S^n, R^{n+1})) \to \pi_n(SO(n+1))$ such that the class of the ordinary imbedding be $0 \in \pi_n(SO(n+1))$. Furthermore the map γ is additive with respect to the connected sum of immersions [5].

Similarly, using the fact that the fibration $SO(n+2) \rightarrow S^{n+1} = SO(n+2)/SO(n+1)$ is the principal fibration with group SO(n+1) tangent to S^{n+1} , it is easy to obtain a bijection $\beta:\pi_0(\operatorname{Imm}(S^n, S^{n+1})) \rightarrow \pi_n(SO(n+2))$ additive with respect to the connected sum. If $i:R^{n+1} \rightarrow S^{n+1}$ is the stereographic projection with the south pole $(x_1 = -1)$ as center, we have a commutative diagram

$$\pi_0(\operatorname{Imm}(S^n, R^{n+1})) \xrightarrow{\gamma} \pi_n(\operatorname{SO}(n+1))$$

$$\downarrow i_* \qquad \qquad \downarrow s$$

$$\pi_0(\operatorname{Imm}(S^n, S^{n+1})) \xrightarrow{\beta} \pi_n(\operatorname{SO}(n+2))$$

AMS Subject Classifications. Primary 5720.

Key Words and Phrases. Differentiable immersion, bounding immersion, codimension one, Smale classification, Hopf-Whitehead homomorphism, Kervaire-Milnor exact sequence.

where the stabilization homomorphism s is induced by the inclusion of SO(n+1) as the subgroup of SO(n+2) acting on the n+1 last coordinates. From now on, we shall denote by \tilde{f} the class $\gamma(f)$.

If we denote by $J_n:\pi_n(SO(n+2))\to\pi_n$ $(=\pi_{2n+2}(S^{n+2}))$ the stable Hopf-Whitehead homomorphism, we can state the result:

THEOREM 1. For each $n \ge 1$, the set of the classes of the bounding immersions of S^n in S^{n+1} is the kernel of J_n .

THEOREM 2. For each $n \ge 2$, the set of the classes of the bounding immersions of S^n in R^{n+1} is the kernel of $J_n \circ s$.

In order to prove those results, we admit some lemmas whose proof will appear elsewhere.

2. First step of the proof. Let A_{n+1} be the cobordism group of stably parallelized manifolds W^{n+1} with boundary S^n . If W' is the manifold without boundary obtained from W by gluing a disk D^{n+1} along the boundary $S^n = dW$, we denote by $a(W, T) \in \pi_n(SO(n+2))$ the obstruction to extend the s-parallelization T of W to W': thence we have an homomorphism $a: A_{n+1} \to \pi_n(SO(n+1))$. Similarly, let B_{n+1} be the monoïd of isomorphism classes of such manifolds W with a true parallelization. It follows from [2] or [6] that, if t is a parallelization of W, there is an immersion $g: W \to R^{n+1}$, unique up to regular homotopy, such that the trivialization T(g) of T(W) be homotopic to t. If we consider the class of the restriction f of g to $dW = S^n$, we define an homomorphism $b: B_{n+1} \to \pi_n(SO(n+1))$. Furthermore we have a natural homomorphism $S: B_{n+1} \to A_{n+1}$.

LEMMA 1. The following diagram

$$B_{n+1} \xrightarrow{b} \pi_n(SO(n+1))$$

$$S \downarrow \qquad \qquad s \downarrow$$

$$A_{n+1} \xrightarrow{a} \pi_n(SO(n+2))$$

is commutative.

Thus, the set of classes of bounding immersions in $Imm(S^n, R^{n+1})$, which is the image of b, is a monoid included in $Ker(J_n \circ s)$ because of the exactness of the sequence

$$A_{n+1} \xrightarrow{a} \pi_n(SO(n+2)) \xrightarrow{J_n} \pi_n$$

(see [4]); and $b(B_{n+1})$ intersects each fibre $s^{-1}(x)$, $x \in \text{Ker}(J_n)$, since the map S is surjective. To prove Theorem 2, it suffices to prove that $b(B_{n+1})$ contains Ker(s) (if $n \ge 2$).

3. Second step. Let $u \in \pi_n(SO(n+1))$ be the boundary of the generator $i_{n+1} \in \pi_{n+1}(S^{n+1})$ in the homotopy exact sequence

$$\pi_{n+1}(S^{n+1}) \xrightarrow{d} \pi_n(SO(n+1)) \xrightarrow{s} \pi_n(SO(n+2)) \rightarrow 0$$

of the fibration $S^{n+1} = SO(n+2)/SO(n+1)$. The cyclic group Ker(s) is generated by u. From the following lemma and the fact that there are parallelizable closed manifolds in all dimensions, it results that u is the class of a bounding immersion:

LEMMA 2. If W'^{n+1} is a closed parallelizable closed manifold, and t is the restriction to $W = W' - D^{n+1}$ of a parallelization of W', then $b(W, t) = u \in \pi_n(SO(n+1))$.

Now, we can prove Theorem 1. First, we remark that any immersion $F: S^n \to S^{n+1}$ is regular homotopic to an immersion $i \circ f$, where $f \in \text{Imm}(S^n, R^{n+1})$ and that $i \circ f$ and $i \circ f'$ have the same class in $\text{Imm}(S^n, S^{n+1})$ if and only if there is some $q \in Z$ such that $\tilde{f}' = \tilde{f} + qu$ ($\in \pi_n(SO(n+1))$). Then we remark that, if F is a bounding immersion in S^{n+1} , it is regular homotopic to an immersion F' bounded by $G': W \to S^{n+1}$ whose image G'(W) avoids the south pole. Therefore:

LEMMA 3. Let $f \in \text{Imm}(S^n, R^{n+1})$; the following assertions are equivalent:

- (i) $J_n \circ s(\tilde{f}) = 0$.
- (ii) There is a bounding immersion regular homotopic (in S^{n+1}) to $i \circ f$.
- (iii) There is a bounding immersion $f' \in \text{Imm}(S^n, R^{n+1})$ such that $\tilde{f}' = \tilde{f} + qu$ for some $q \in \mathbb{Z}$.

Theorem 1 is a quite evident consequence of Lemma 3.

4. Last step. If n is even, Theorem 2 is already proved, because Ker(s) contains at most the two elements 0 and u which are both bounding. If n=2 or 6, then $\pi_n(SO(n+1))=0$ and the only class is trivially the class of a bounding immersion. If $n\neq 2$, 6, then J_n is injective [1] and the two distinct classes 0 and u are the only bounding classes.

If n is odd, the kernel of s is infinite cyclic, generated by u and it suffices to prove that -u is the class of a bounding immersion, since $b(B_{n+1})$ is a mono \bar{u} d.

If $f \in \text{Imm}(S^n, R^{n+1})$, let $d(\tilde{f}) \in Z$ be the normal degree (curvatura integra) of the immersion f (see [5]). It is proved in [5] that $d(\tilde{f} + \tilde{f}') = d(\tilde{f}) + d(\tilde{f}') - 1$. Now, the Hopf theorem of curvatura integra states that $d(\tilde{f}) = \chi(W)$ if f is the restriction to the boundary of an immersion

 $g: W \to \mathbb{R}^{n+1}$. It is clear that d(0) = 1, and it follows from Lemma 2 that d(u) = -1. Thus, the elements qu $(q \in \mathbb{Z})$ of Ker(s) are determined by their (odd) degree $d(q \cdot u) = 1 - 2q$.

If n=1, there is no 2-manifold, with boundary S^1 , whose Euler number is more than 1, so that:

THEOREM 2'. In $\pi_0(\text{Imm}(S^1, R^2)) \cong \pi_1(SO(2))$, the classes of bounding immersions are the classes of odd degree 1-2q, $q \geq 0$.

For n odd $\neq 1$, the manifold $W' = S^2 \times S^{n-1}$ is s-parallelizable; there is a parallelization t of the manifold $W = W' - D^{n+1}$ which stably extend to W'. It follows from Lemma 1 that $b(W, t) \in \text{Ker}(s)$. Now, the Euler number of W is 3 so that b(W, t) = -u. Thus, -u is the class of a bounding immersion and Theorem 2 is proved.

5. Application.

THEOREM 3. Let V^n be an s-parallelizable compact manifold without boundary, and $f: V \rightarrow R^{n+1}$ an immersion. Suppose $n \ge 2$. If $i \circ f: V \rightarrow S^{n+1}$ is a bounding immersion, then f is regular homotopic (in R^{n+1}) to an immersion f' which is bounding (in R^{n+1}).

If the manifold V is the n-sphere, this theorem is an immediate corollary of Theorems 1 and 2. In the general case, we deform the immersion $G: W \rightarrow S^{n+1}$ which bounds $F = i \circ f$ in an immersion G' whose image G'(W) avoid the south pole, so that $G' = i \circ g'$. The immersion g' bounds f' such that $i \circ f' = F' = G' \mid V$. But f and f' have not the same class (in R^{n+1}) because, during the regular homotopy, the class of f has been changed by each crossing of the south pole.

Let $F_t: V \to S^{n+1}$ $(t \in [0, 1])$ be a regular homotopy with only one crossing of the south pole through $F_t(V)$, then f_1 is regular homotopic to the connected sum $f_0 + h$ of f_0 with an immersion $h: S^n \to R^{n+1}$ with class $\tilde{h} \in \text{Ker}(s)$ (in fact, $\tilde{h} = \pm u$, depending on the direction of the crossing).

Thus, f is regular homotopic to an immersion f'' which is the connected sum of f' with some immersions h_i such that $\tilde{h}_i \subset \text{Ker}(s)$. We can replace the h_i by bounding immersions k_i of the same class (Theorem 2), and, now, f'' is the connected sum of the bounding immersions f' and h_i ; so f'' is a bounding immersion.

BIBLIOGRAPHY

- 1. J. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71; Correction, ibid. 7 (1968), 331. MR 33 #6628; MR 37 #5874.
- 2. M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 22 #9980,

- 3. M. Kervaire and J. Milnor, Groups of homotopysphere. I, Ann. of Math. (2) 77 (1963), 504-537. MR 26 #5584.
- 4. ——, Bernoulli numbers, homotopy groups and a theorem of Rohlin, Proc. Internat. Congress of Math. (Edinburgh, 1958), Cambridge Univ. Press, New York, 1960. MR 22 #5537.
- 5. J. Milnor, On the immersion of n-manifolds in (n+1)-space, Comment. Math. Helv. 30 (1956), 275-284. MR 18, 60.
- 6. V. Poénaru, Sur la théorie des immersions, Topology 1 (1962), 81–100. MR 27 #2992.
- 7. S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344. MR 21 #3862.

Ecole Normale Supérieure, Paris, France