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Let M be an (w + l)-dimensional differentiate manifold without 
boundary (compact or not) and ƒ : V—+M an immersion of the com­
pact w-dimensional manifold without boundary V. We say that ƒ is a 
bounding immersion if there is a manifold Wn+l with boundary 
dW= V, and an immersion g\W-+M such that f=g\ V. If M and V 
are oriented, then V must be the oriented boundary of the oriented 
manifold Wy and g an oriented immersion of codimension 0. 

Using the classification of immersions (Smale [7], Hirsch [2]) and 
the work of Kervaire-Milnor [3], [4], we compute in this note the 
regular homotopy classes of all bounding immersions of the sphere 
Sn into the euclidean space jRn+1 and into the sphere Sn+1. 

1. Statement of the results. From [2] we know that the derivation 
f*-*T(f) defines a weak homotopy equivalence between the space 
I m m ( 7 , M) of the immersions of V into M and the space of the fibre-
maps of the tangent bundle T(V) into the tangent bundle T(M) 
which are injective in each fibre. If V=Sn and M — Rn+l, the set of 
connected components of this last space is an homogeneous space 
under the group 7rw(SO(w + l ) ) . By a convenient identification, we 
obtain a bijection 7:7r0(Imm(5n, Rn+1))—>Tn(SO(n+l)) such that 
the class of the ordinary imbedding be 0£7rw(SO(w + l ) ) . Furthermore 
the map y is additive with respect to the connected sum of immer­
sions [S]. 

Similarly, using the fact that the fibration SO(n+2)—»5n+1 

= SO(n+2)/SO(n + l) is the principal fibration with group SO(n+l) 
tangent to Sn+ *, it is easy to obtain a bijection j8:7r0(Imm(5n, 5n+1)) 
~->irn(SO(n+2)) additive with respect to the connected sum. If 
i:Rn+1—>5n+1 is the stereographic projection with the south pole 
(xi= —1) as center, we have a commutative diagram 

7T0(Imm(5w, Rn+1))^Tn(SO(n + 1)) 

it"* is 
7r0(Imm(S», Sn+1)) -> wn(SO(n + 2)) 
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where the stabilization homomorphism 5 is induced by the inclusion 
of SO(w+l ) as the subgroup of SO(w+2) acting on the n+1 last 
coordinates. From now on, we shall denote by ƒ the class 7(f). 

If we denote by Jn:Tn(SO(n+2))->7rn ( = 7r2n+2(Sn+2)) the stable 
Hopf-Whitehead homomorphism, we can state the result: 

THEOREM 1. For each n ^ l , the set of the classes of the bounding 
immersions of Sn in Sn+1 is the kernel of J». 

THEOREM 2. For each n^2, the set of the classes of the bounding 
immersions of Sn in Rn+1 is the kernel of Jn o s. 

In order to prove those results, we admit some lemmas whose proof 
will appear elsewhere. 

2. First step of the proof. Let An+X be the cobordism group of stably 
parallelized manifolds Wn+1 with boundary 5 n . If W' is the manifold 
without boundary obtained from W by gluing a disk Dn+l along the 
boundary Sn = dW, we denote by a(W% r )£7r n (SO(t t+2)) the ob­
struction to extend the s-parallelization T of W to W' : thence we have 
an homomorphism a\An+\—»7r»(SO(w + l ) ) . Similarly, let J3n+i be the 
monoid of isomorphism classes of such manifolds W with a true 
parallelization. I t follows from [2] or [ó] that, if J is a parallelization 
of W, there is an immersion g: W—*Rn+1, unique up to regular homo-
topy, such tha t the trivialization T(g) of T(W) be homotopic to t. If 
we consider the class of the restriction ƒ of g to dW— 5 n , we define an 
homomorphism b\Bn+i—>7rn(SO(n + l ) ) . Furthermore we have a 
natural homomorphism S:Bn+x—*-4n+i. 

LEMMA 1. The following diagram 

Bn+1-+Tn(SO(n+ 1)) 

Si si 
An+1^wn(SO(n+ 2)) 

is commutative. 

Thus, the set of classes of bounding immersions in Imm(5 n , jRn+1), 
which is the image of 6, is a monoid included in K e r ( / n o s) because 
of the exactness of the sequence 

An+1-^Tn(SO(n+ 2))-^7Tn 

(see [4]); and b(Bn+i) intersects each fibre s~1(x)} # £ K e r ( J n ) , since 
the map S is surjective. To prove Theorem 2, it suffices to prove that 
6(Bn+x) contains Ker(s) (if w e 2 ) . 
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3. Second step. Let uGTrn(SO(n+l)) be the boundary of the 
generator in+iÇzirn+i(Sn+1) in the homotopy exact sequence 

7Tn+1(S»+1) -+Tn($0(n + 1)) ^>7Tn(SO(w + 2)) - > 0 

of the fibration 5 w + 1 = SO(w + 2) /SO(w+l) . The cyclic group Ker(s) 
is generated by u. From the following lemma and the fact that there 
are parallelizable closed manifolds in all dimensions, it results that u 
is the class of a bounding immersion: 

LEMMA 2. If W'n+1 is a closed parallelizable closed manifold, and t 
is the restriction to W=W' — Dn+1 of a parallelization of W', then 
b(W, 0 = « & r » ( S O ( n + l ) ) . 

Now, we can prove Theorem 1. First, we remark that any immer­
sion F:Sn—»5n+1 is regular homotopic to an immersion iof, where 
/ £ I m m ( 5 n , Rn+1) and that iof and iof have the same class in 
Imm(£n , Sn+1) if and only if there is some qÇzZ such that ƒ ' = ƒ 
+qu (Çzirn(SO(w + l))) . Then we remark that, if F is a bounding im­
mersion in Sn+1, it is regular homotopic to an immersion F' bounded 
by Gr\ W—»5n+1 whose image Gr(W) avoids the south pole. Therefore: 

LEMMA 3. Let / £ I m m ( , S n , i?w+1); the following assertions are equiva­
lent: 

0) / n O 5 ( f ) = 0 . 
(ii) There is a bounding immersion regular homotopic (in Sn+1) to 

iof. 
(iii) There is a bounding immersion / ' £ I m m ( £ n , Rn+l) such that 

f'=f+qu for some q£zZ. 

Theorem 1 is a quite evident consequence of Lemma 3. 

4. Last step. If n is even, Theorem 2 is already proved, because 
Ker(s) contains at most the two elements 0 and u which are both 
bounding. If n = 2 or 6, then wn(SO(n+l)) = 0 and the only class is 
trivially the class of a bounding immersion. If W5^2, 6, then Jn is 
injective [ l ] and the two distinct classes 0 and u are the only bound­
ing classes. 

If n is odd, the kernel of 5 is infinite cyclic, generated by u and it 
suffices to prove that — u is the class of a bounding immersion, since 
b(Bn+i) is a monoid. 

I f / G I m m ( 5 n , Rn+1), let d ( / )GZ be the normal degree (curvatura 
intégra) of the immersion ƒ (see [5]). I t is proved in [5] that d(J+f') 
= d(f)+d(f') — l. Now, the Hopf theorem of curvatura intégra states 
that d(J) =x(W) if ƒ is the restriction to the boundary of an immersion 
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g: W—>Rn+l. I t is clear that d(0) = 1, and it follows from Lemma 2 that 
d(u) = — 1 . Thus, the elements qu (qÇzZ) of Ker(s) are determined by 
their (odd) degree d(q-u) = l—2q. 

If w = l, there is no 2-manifold, with boundary 51 , whose Euler 
number is more than 1, so that : 

THEOREM 2'. In 7r0(Imm(51, R2))=TI(SO(2)), the classes of bound­
ing immersions are the classes of odd degree l — 2q, q è 0. 

For n odd 5^1, the manifold W' = S2XSn~1 is 5-parallelizable; there 
is a parallelization t of the manifold W—W—Z>+1 which stably 
extend to W'. It follows from Lemma 1 that b(W, / )£Ker ( s ) . Now, 
the Euler number of W is 3 so that b(W, t) — —u. Thus, — u is the 
class of a bounding immersion and Theorem 2 is proved. 

5. Application. 

THEOREM 3. Let Vn be an s-parallelizable compact manifold without 
boundary, and f:V—>Rn+1 an immersion. Suppose n*^2. If i of:V 
—*Sn+l is a bounding immersion, then ƒ is regular homotopic (in Rn+1) 
to an immersion f which is bounding (in Rn+1). 

If the manifold V is the w-sphere, this theorem is an immediate 
corollary of Theorems 1 and 2. In the general case, we deform the 
immersion G:W—»5n+1 which bounds F = iof in an immersion G' 
whose image G'(W) avoid the south pole, so that G' = iog'. The 
immersion g' bounds ƒ' such that i o f' — F' = G'\ V. But ƒ and ƒ have 
not the same class (in Rn+1) because, during the regular homotopy, 
the class of ƒ has been changed by each crossing of the south pole. 

Let Ft: V—»5W+1 ( / £ [0, l ] ) be a regular homotopy with only one 
crossing of the south pole through Ft(V), then / i is regular homotopic 
to the connected sum fo+h of f0 with an immersion h:Sn—>Rn+1 with 
class $£Ker ( s ) (in fact, Ji= ±u, depending on the direction of the 
crossing). 

Thus, ƒ is regular homotopic to an immersion ƒ" which is the con­
nected sum of ƒ' with some immersions hi such that X,-£Ker(s). We 
can replace the hi by bounding immersions hi of the same class 
(Theorem 2), and, now, ƒ" is the connected sum of the bounding 
immersions/ ' and &,-; s o / " is a bounding immersion. 
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