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Let M be an (n-+1)-dimensional differentiable manifold without
boundary (compact or not) and f: V—M an immersion of the com-
pact n-dimensional manifold without boundary V. We say that fis a
bounding immersion if there is a manifold Wrt! with boundary
dW =YV, and an immersion g: W— M such that f=g| V.If Mand V
are oriented, then ¥V must be the oriented boundary of the oriented
manifold W, and g an oriented immersion of codimension 0.

Using the classification of immersions (Smale [7], Hirsch [2]) and
the work of Kervaire-Milnor [3], [4], we compute in this note the
regular homotopy classes of all bounding immersions of the sphere
S into the euclidean space R*t! and into the sphere S»t+1.

1. Statement of the results. From [2] we know that the derivation
fT(f) defines a weak homotopy equivalence between the space
Imm(V, M) of the immersions of V into M and the space of the fibre-
maps of the tangent bundle 7'(V) into the tangent bundle T'(M)
which are injective in each fibre. If V=35 and M =R"*!, the set of
connected components of this last space is an homogeneous space
under the group 7,(SO(z+1)). By a convenient identification, we
obtain a bijection vy:me(Imm(S*, R»+1))—m,(SO(n+1)) such that
the class of the ordinary imbedding be 0&7,(SO(#+1)). Furthermore
the map % is additive with respect to the connected sum of immer-
sions [5].

Similarly, using the fact that the fibration SO(n+2)—S»+1
=S0(n+2)/SO(n+1) is the principal fibration with group SO(n-+1)
tangent to S*t1, it is easy to obtain a bijection 8:7o(Imm(S», S»+1))
—m,(SO(n+2)) additive with respect to the connected sum. If
1: R1—S7+1 is the stereographic projection with the south pole
(x1=—1) as center, we have a commutative diagram

ro(Imm(S™, R*1)) > 7a(SO(n + 1))

| ix ls
mo(Imm(S», S7H1)) ﬁ m(SO(n + 2))
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where the stabilization homomorphism s is induced by the inclusion
of SO(n+1) as the subgroup of SO(n+2) acting on the n+1 last
coordinates. From now on, we shall denote by f the class v (f).

If we denote by J,:m,(SO(n+2))—>m, (=m2n2(S*t?)) the stable
Hopf-Whitehead homomorphism, we can state the result:

THEOREM 1. For each n=1, the set of the classes of the bounding
immersions of S* in S*t1is the kernel of J,.

THEOREM 2. For each n=2, the set of the classes of the bounding
immersions of S* in R+ is the kernel of J,0s.

In order to prove those results, we admit some lemmas whose proof
will appear elsewhere.

2. First step of the proof. Let 4.1 be the cobordism group of stably
parallelized manifolds W»+! with boundary S*. If W’ is the manifold
without boundary obtained from W by gluing a disk D**! along the
boundary S*=dW, we denote by a(W, T)Em,(SO(n+2)) the ob-
struction to extend the s-parallelization T of W to W’: thence we have
an homomorphism @:4,.1—7,(SO(n-+1)). Similarly, let B,;1 be the
monoid of isomorphism classes of such manifolds W with a true
parallelization. It follows from [2] or [6] that, if ¢ is a parallelization
of W, there is an immersion g: W—R"*+1, unique up to regular homo-
topy, such that the trivialization T'(g) of T(W) be homotopic to ¢. If
we consider the class of the restriction f of g to dW = S*, we define an
homomorphism b:B,1—m,(SO(n+1)). Furthermore we have a
natural homomorphism S: B, 1—A4 4.

LeEMMA 1. The following diagram

Baya —IL m(SO(n + 1))
Sl sl
Anpr 5 70(SO(n + 2))
1s commutative.

Thus, the set of classes of bounding immersions in Imm(S®, R*t1),
which is the image of b, is a monoid included in Ker(J, o s) because
of the exactness of the sequence

a Jn
Aap1 — m(SO(n + 2)) — 7y

(see [4]); and b(B,1) intersects each fibre s—!(x), xEKer(J,), since
the map S is surjective. To prove Theorem 2, it suffices to prove that
b(Bp41) contains Ker(s) (if n=2).
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3. Second step. Let u&Ew,(SO(n+1)) be the boundary of the
generator ,41Em,41(S**t?) in the homotopy exact sequence

a1 (S™Y) im.(SO(n + 1)) —s—nrn(SO(n + 2)) -0

of the fibration S**1=S0(n+2)/SO(n+1). The cyclic group Ker(s)
is generated by #. From the following lemma and the fact that there
are parallelizable closed manifolds in all dimensions, it results that «
is the class of a bounding immersion:

LeEMMA 2. If W't is a closed parallelizable closed manifold, and ¢
is the restriction to W=W'—D"*! of a parallelization of W', then
(W, t) =u&Em.(SO(n+1)).

Now, we can prove Theorem 1. First, we remark that any immer-
sion F:S"—S7*+1 is regular homotopic to an immersion 7 o f, where
fEImm(S?, R**!) and that 10f and 7o f’ have the same class in
Imm(S», S**+!) if and only if there is some ¢&Z such that f'=f
+qu (Em.(SO(n+1))). Then we remark that, if F is a bounding im-
mersion in S**1, it is regular homotopic to an immersion F’ bounded
by G’: W—S*+1 whose image G’ (W) avoids the south pole. Therefore:

LemMma 3. Let fEImm(S®, R*t1); the following assertions are equiva-
lent:

(i) J.os(f)=0.

(ii) There is a bounding immersion regular homotopic (in S*+1) to
10f.

(iii) There is a bounding immersion f'SImm(S*, R*tY) such that
f'=f+qu for some g Z.

Theorem 1 is a quite evident consequence of Lemma 3.

4. Last step. If n is even, Theorem 2 is already proved, because
Ker(s) contains at most the two elements 0 and # which are both
bounding. If n=2 or 6, then 7,(SO(n+1)) =0 and the only class is
trivially the class of a bounding immersion. If ##2, 6, then J, is
injective [1] and the two distinct classes 0 and % are the only bound-
ing classes.

If n is odd, the kernel of s is infinite cyclic, generated by # and it
suffices to prove that —u is the class of a bounding immersion, since
b(B.+1) is a monoid.

If f€EImm(S*, R, let d(f) EZ be the normal degree (curvatura
integra) of the immersion f (see [5]). It is proved in [5] that d(f+f)
=d(f)+d(f') —1. Now, the Hopf theorem of curvatura integra states
that d(f) =x (W) if f is the restriction to the boundary of an immersion
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g: W—Rr+1, Itis clear that d(0) =1, and it follows from Lemma 2 that
d(u) = —1. Thus, the elements qu (¢EZ) of Ker(s) are determined by
their (odd) degree d(g-u)=1—2q.

If n=1, there is no 2-manifold, with boundary S?, whose Euler
number is more than 1, so that:

THEOREM 2. In 7wo(Imm(S!?, R2))=m(SO(2)), the classes of bound-
ing immersions are the classes of odd degree 1 —2q, ¢=0.

For # odd #1, the manifold W’ =S82X 81 is s-parallelizable; there
is a parallelization ¢ of the manifold W=W’—D»+! which stably
extend to W’. It follows from Lemma 1 that 6(W, {) EKer(s). Now,
the Euler number of W is 3 so that (W, ) = —u. Thus, —u is the
class of a bounding immersion and Theorem 2 is proved.

5. Application.

THEOREM 3. Let V* be an s-parallelizable compact manifold without
boundary, and f:V—R**' an immersion. Suppose n=2. If i o fiV
—S"t1 45 a bounding immersion, then f is regular homotopic (in R»+1)
to an tmmersion f' which is bounding (in R*+1),

If the manifold V is the n-sphere, this theorem is an immediate
corollary of Theorems 1 and 2. In the general case, we deform the
immersion G:W—S"*! which bounds F=70f in an immersion G’
whose image G'(W) avoid the south pole, so that G'=70g’. The
immersion g’ bounds f” such that i o f'= F’=G’| V. But f and f’ have
not the same class (in R"+!) because, during the regular homotopy,
the class of f has been changed by each crossing of the south pole.

Let F,: V—S**+1 (¢ [0, 1]) be a regular homotopy with only one
crossing of the south pole through F,(V), then f1 is regular homotopic
to the connected sum fo+# of fo with an immersion A:S*—R*+! with
class #E€Ker(s) (in fact, 2= +u, depending on the direction of the
crossing).

Thus, f is regular homotopic to an immersion f” which is the con-
nected sum of f with some immersions k; such that z;EKer(s). We
can replace the k; by bounding immersions k; of the same class
(Theorem 2), and, now, f’ is the connected sum of the bounding
immersions f’ and k;; so f' is a bounding immersion.
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