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1. Introduction. Notation and definitions. First of all I wish to 
acknowledge with thanks the many helpful conversations I have had 
with Professors Olga Taussky, Peter Roquette and Hans Zassenhaus, 
when I first began studying the subject of integral representations. 

Historically, the subject received its main impetus from two 
branches of algebra. One branch is algebraic number theory, espe­
cially that part concerned with ideal theory; and the other is matrix 
theory, mainly that portion dealing with matrix representations of 
associative algebras. Methods of homological algebra have played 
an increasingly important role in the subject in recent years. 

An expanded version of an address delivered before the Chicago meeting of the 
Society by invitation of the Committee to Select Hour Speakers for Western 
Sectional Meetings, April 20, 1968, under the title Recent progress in the theory of 
integral representations; received by the editors September 17, 1969. 
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group representations, genus. 
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We wish to study representations of certain algebraic systems, 
called orders, by means of matrices with entries in an integral domain 
R. It is often more convenient to consider, instead of matrices, the 
underlying spaces on which these matrices act. Such spaces are 
special instances of R-lattices, by which we mean finitely generated 
torsionfree i£-modules. Only those jR-lattices having a free jR-basis 
give rise to matrices. Of course, when R is a principal ideal domain, 
every i?-lattice has a free i^-basis. 

Let A be a ring with unity element 1, containing R in its center 
(identify R with R-l). This makes A into an i^-module. Call A an 
R-order if A is finitely generated and torsionfree as i£-module. Let 
F be the quotient field of R, and set A = F ® R A, so that A is a finite 
dimensional algebra over F. We always identify A with 1 ® A, so A is 
embedded in A, and we may write A = F-k (the set of TMinear com­
binations of the elements of A). Likewise, every i?-lattice M is em­
bedded in the vector space over F given by F®R M~ FM. The 
dimension (FM:F) is called the R-rank of M. 

Here are some examples of orders: 
1. The ring of all algebraic integers in an algebraic number field 

F is a Z-order in F, and will be denoted hereafter by alg. int. {F\. 
We shall use this notation only when F is an algebraic number field. 

2. If G is a finite group, the integral group ring RG is an jR-order 
in the group algebra FG. 

3. The ring (R)n of all n X n matrices with entries in R is an i^-order 
in the matrix algebra (F)n. 

4. For a an algebraic integer, the ring Z[a] is a Z-order in the field 
Q(a)y where Q is the rational field. 

Let A be an i^-order; a A-lattice is an jR-lattice which is also a 
A-module. The fundamental problem in the theory of integral repre­
sentations is as follows: 

Given an R-order A, determine all k-lattices. Once we have obtained 
some answers to this question, we may then proceed to the next 
problem : 

Apply the theory of integral representations to investigate properties 
of various orders. 

The purpose of this survey is to describe the present state of knowl­
edge about these problems, especially the first one. References which 
give a general introduction to the theory of orders are CR2 Chapter 
11, Roggenkamp-Dyson [208b], Faddeev [80]. 

2 CR denotes the reference Curtis-Reiner [46] throughout. 
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It is clearly an impossible task to give a complete description of 
the contents of the 250 or so bibliographical references for this article. 
I have of course been guided by my own interests in making a selec­
tion from the wealth of material available, and I regret that many 
references are mentioned only briefly in passing. Certain important 
topics on the periphery of the subject have been omitted entirely, 
and would require their own survey articles; in particular, there is no 
discussion of cohomology of groups, nor of Galois theory of rings. 

In addition to the earlier notation, we also fix the following once 
and for all : 

char F : characteristic of the field F 
P = maximal ideal of the integral domain R 

RP = localization of R a t P = {a/fi:a^R, pGR-P} 
Rp = P-adic completion of R; FP = quotient field of Rp 

M{k) = direct sum of k copies of M 
(Z))n = ring of all nXn matrices with entries in D 

G = finite group of order g 
+ : external direct sum 

X)', © : internal direct sum 
a | b : a divides b 
a\b : a does not divide b 

rad A = Jacobson radical of the ring A 
A free left A-module is a direct sum of copies of the left A-module 

A. A projective left A-module is a direct summand of a free module. 
The ring A is left hereditary if every left ideal of A is a projective 
A-module. (Equivalently, A is left hereditary if every submodule of a 
free A-module is isomorphic to an external direct sum of left ideals of 
A, each of which is projective. M. Auslander has shown that if A is 
both left and right noetherian, then A is left hereditary if and only if 
A is right hereditary. See Rotman [218], Cartan-Eilenberg [40].) 

A Dedekind domain is an integral domain in which every nonzero 
ideal is uniquely expressible as a product of prime ideals. (Equiva­
lently, a Dedekind domain is a hereditary integral domain. See 
Cartan-Eilenberg [40].) In particular alg. int. {F\ is always a 
Dedekind domain. 

(1.1). DEFINITION. Let R be a Dedekind domain. An R-ideal in F 
is a nonzero jR-lattice in F. Products of i£-ideals are again i£-ideals; 
relative to this multiplication, the jR-ideals in F form a multiplicative 
group denoted by ƒ {R} . 

The following theorem lists some standard properties of lattices 
over Dedekind domains. 
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(1.2). THEOREM. Let Rbe a Dedekind domain. 
(i) Every R-lattice is a projective R-module. 
(ii) Let NQM be R-lattices. Then N is an R-direct summand of M 

if and only if M/N is R-torsionfree. 
(iii) Each R-ideal J in F can be generated (as R-module) by two 

elements. Further, each J is invertible, that is, there is an R-ideal J' such 
that J-J'= R. 

(iv) Given any R-lattice M, there exist elements mi, • • • , mkÇzM 
and ideals J i , • • • , JkÇzl{R} such that 

M = JïWi © • • • © Jkfnk. 

(v) Given R-lattices NQ.M, there exist elements mi, • • • , w^GAf, 
R-ideals J i , • • • , Jk&l{R}t and integral ideals Ei, • • • , Ek in R 
(some of which may be zero), such that 

M = J1M1 © • • • © Jmk, 

N = EiJimi © - • • © EkJktnk, 

EiD E2D • • O £*. 

References. Cartan-Eilenberg [40, Chapter 7], Chevalley [41 ], 
CR Chapter 3, Kaplansky [138], [139], Levy [152], Steinitz [228], 
Zariski-Samuel [262, Chapter 5]. 

Let J , J'Çzl{R} ; they are in the same ideal class if J ' = Jx for some 
x G F . The number of ideal classes is called the (ideal) class number 
of R (or of F), and is finite when F is an algebraic number field. 
(CR Chapter 3). 

Now let NQM be -R-lattices for which M/N is a torsion jR-module. 
Then each of the ideals {E{} occurring in part (v) of Theorem 1.2 is 
nonzero, and we define the order ideal of M/N to be the product 
Ei • • • Ek. Equivalently, this order ideal is the product of the 
jR-annihilators of the composition factors of the i^-module M/N. 
Denote by ord(M/N) the order ideal of M/N. References for this 
concept: Fröhlich [85], CR §80. 

2. General remarks. Jordan-Zassenhaus Theorem. To begin with, 
let R be an arbitrary noetherian domain, and A an jR-order in the 
7^-algebra A. Given a A-lattice M, form the 4-module F®R M. 
Identifying M with \®M, we write F-M in place of F®M. Such 
identifications will be made hereafter without specific comment. 

Let N<ZM be A-lattices, and call N R-pure in M if M/N is R-
torsionfree. An easy result is 
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(2.1). THEOREM. Given any A-lattice M, there is a one-to-one corre­
spondence W*-*N between A-submodules W of FM and R-pure A-
sublattices N of M. The correspondence is given by 

N = MC\W, W = FN. 

Further, each finitely generated A-module V is of the form FM for some 
A-lattice M in V. 

References. Zassenhaus [263]; CR §73. 
The latter part of the above theorem has important consequences 

for the theory of group representations. Let G be a finite group; an 
F-representation of G of degree n is a homomorphism of G into (F)nt 

carrying the identity of G onto the identity matrix. Two F-represen-
tations T;G—>(F)n, U:G-^(F)n are F-equivalent if there exists an 
invertible CG (F)n such that 

C-1 • T(x) • C = U(x) for all x G G. 

In other words, T and U are equivalent if they are afforded by the 
same FG-module by using different F-bases of that module. 

Taking A = RG in the latter part of (2.1), we obtain 

(2.2). THEOREM. If Ris a principal ideal domain, every F-represen­
tation of the finite group G is F-equivalent to an R-representation of G. 

Even when R is not a principal ideal domain, the above result is use­
ful. In particular, suppose R = alg. int. { F}, and let R' = alg. int. { Ff} 
for some F'Z)F. I t is known that F' may be chosen so that for each 
JÇZI{R}, the i£'-ideal JR' is principal. I t is also known that every 
complex representation of a finite group G is equivalent (over the 
complex field) to an F-representation of G, for some algebraic number 
field F. This yields 

(2.3). THEOREM. Every complex representation of G is equivalent 
{over the complex field) to a representation by matrices whose entries are 
algebraic integers. 

Reference. CR (75.4). 
In this direction, we quote a result due to Schur. 

(2.4). THEOREM. Let R = alg. int. {F}, and let h be the number of 
ideal classes in R. If (h, n) — l, then every F-representation of G of 
degree n is F-equivalent to an R-representation of G. 

Reference. CR (75.5). 
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Returning now to the general case where A is an JR-order in A, we 
start with any A-lattice M, and write a composition series for the 
A -module FM, say 

FM = Wo D Wx D • • • D Wk = 0. 

Then there is a chain of A-lattices 

(2.5) M = M o 3 M i D - O I f c = 0, Mi = MC\Wi. 

For each i, Mi+x is an impure A-sublattice of Mi such that 

F ®R (Mi/Mi+1) ^ Wi/Wi+1. 

We may call (2.5) an "^-composition series" for M, with "^-composi­
tion factors" {Mi/Mi+ilOl&i<k}. The analogue of the Jordan-
Holder Theorem is not valid, however, since indeed the i?-composition 
factors are (in general) not uniquely determined by M. (See Reiner 
[184]; CR, Example 2 at the end of §73.) 

As is well known, the number of ideal classes in alg. int. {F} is 
finite (see CR, §20, for example). A far-reaching generalization of this 
is the fundamental result 

(2.6). JORDAN-ZASSENHAUS THEOREM. Let Rbea Dedekind domain 
whose quotient field F is an algebraic number field, and let A be an 
R-order in a semisimple F-algebra A, Let W be any finitely generated 
A-module, and set 

a(W) = {M: M = A-lattice, FM ££ W). 

Then the number s(W) of ^isomorphism classes in a(W) is finite. 

References. Zassenhaus [263], CR §79. For corresponding results 
when R = k[X], where X is an indeterminate over the finite field k, 
see Roggenkamp [202], [203]. For the more general case where R is 
the integral closure of k [X] in a finite extension of k(X), see Higman-
McLaughlin [122]. The case where R is a P-adic ring is treated by 
Jenner [134]. 

The actual determination of s(W) is a difficult problem. The most 
fruitful approach is to partition <r(W) into certain collections of 
A-isomorphism classes, called genera. We place two A-lattices M and 
N in the same genus if and only if 

(2.7). FM^FN and RPM^RPN for each maximal ideal P of R. 

It is sometimes possible to determine explicitly the number of genera 
in cr(W), and then to find the number of A-isomorphism classes in each 
genus. We shall discuss this in more detail in §§6, 8. 
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We give some examples where s(W) can be calculated. For instance, 
suppose 

A = Z[x]/(xn - 1), 

so A==ZG, G cyclic of order n. Let W=Q(6d), the cyclotomic field 
generated by a primitive dih root of unity ddl where d\ n. Then W is 
an irreducible A -module, and each M^<x{W) is A-isomorphic to a 
Z[0d]-ideal in the field Q(0d). In this case, s( W) is precisely the number 
of ideal classes in the ring Z[0d]. (See also Taussky-Todd [250], 
[251].) 

In this direction, let us consider the case where ƒ (x) is a monic nth 
degree polynomial in Z[x] with distinct zeros. Set 

A = Q[x]/(f(x)), A = Z[x]/(f(x)), 

so A is a Z-order in A. Any X £ ( Q ) n with minimal polynomial f(x) 
gives rise to an algebra isomorphism ^4=Ç[X] via x—»X, and so this 
map is just a Q-representation of A afforded by A itself. Those 
matrices M G ( Z ) n with minimal polynomial f(x) are afforded by 
A-lattices in A. Isomorphism classes of lattices correspond to classes 
of integral matrices under unimodular equivalence, where the ma­
trices M, N are unimodularly equivalent if there exists a matrix £/£ (Z)n 

such that [ /-1G(Z)n , and M = UNU~K Further, two A-lattices L, V 
are isomorphic if and only if L' — Lh for some unit X£^4, so the num­
ber of isomorphism classes of lattices is the same as the number of 
left ideal classes in A. 

These results, due to Latimer-MacDuffee [148], were simplified 
by Taussky [240 ] in case ƒ (x) is irreducible. In that case, let a be an 
algebraic integer for which / ( O J ) = 0 , so A==Q(a) is a field, and A 
= Z[a] is a Z-order in A. Each ideal m of A gives rise to a matrix M 
(with f(M) == 0) by letting a act on a Z-basis for m. Assuming that 
A = alg. int. {^4}, Taussky [244] proved that the ideal class of m~1 

corresponds to the transpose MT. Further, let Z G ( Z ) n carry the 
Z-basis {1, a, • • - , a""1} of A onto a Z-basis of the ideal m; such a 
matrix X is an ideal matrix, Taussky studied such ideal matrices in 
detail in [246] and [247]; see also [248] for a description of matrices 
U such that M1^UMU~\ 

Other references for this section: Bender [IS], Dade [49]. 

3. Extensions. As general references for this section we cite 
Cartan-Eilenberg [40], CR, Rotman [218]. We assume throughout 
that R is a noetherian domain, and that A is any i^-order. Given a 
pair of A-lattices N, L, we may form the finitely generated i£-module 
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ExtA(iV, L), whose elements are in one-to-one correspondence with 
classes of exact sequences of A-lattices 0—»L—>.M—>iV—»0. Two such 
sequences are placed in the same class if there is a commutative diagram 

U I U 
0 - > L - > J £ ' - * i V - > 0 . 

(Addition of extensions is gotten from the Baer sum, and the elements 
of R act on Ext by acting on either one of the lattices.) 

Hence if we are given a pair of A-lattices L and N, and wish to 
determine all A-lattices M containing L such that M/L=N, we must 
first calculate ExtA(iV, L), and then decide when extensions M from 
different classes are A-isomorphic. (See Reiner [183], for example.) 

Let Rp denote the localization of R a t a maximal ideal P of R. For 
each i^-module T, we may set TP = RP ®R T. Then A P is an jRp-order, 
and each A-lattice L determines a Ap-lattice Lp. 

(3.1). THEOREM. Let L, N be A-lattices, and let P range over the set 
of maximal ideals of R. Then: 

(i) For each P , 

{ExtI(iV, L)}P ^ Ext\p(Np, LP). 

(ii) There is a monomorphism 

Extl(#, L) -> I I Ext I p(iVP, LP). 
p 

(iii) If R is a Dedekind domain, and if there exists a nonzero ideal J 
in R such that J- ExtA(iV, L) = 0, then 

Extl(N,L)ç* E ' Extl (NP, LP). 
PDJ P 

(iv) If RP denotes the P-adic completion of Rp, then 

R% <S)Rp Ext A p (NP, LP) ^ Extl*(iVp, LP). 

References. CR (7S.25), Auslander-Goldman [ l ] , Cartan-Eilenberg 
[40], DeLeeuw [54], Nunke [74], Reiner [183]. We remark that all 
of the above isomorphisms are natural. 

An exact sequence of A-lattices 

f e 
(3.2) Q-+L1>M1+N->O 
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is said to be split if ƒ(£) is a A-direct summand of M> or equivalently, 
if there exists a map &GHoniA(iV, M) such that gh — identity map on 
N. From the definition of Ext, it follows at once that the sequence 
(3.2) is split if and only if it represents the zero class in Exti(iV, L). 

For each maximal ideal P of R, tensoring (3.2) with Rp yields an 
exact sequence of Ap-lattices 

(3.3) 0 -> LP -» MP -> NP -> 0. 
fp iP 

Then (ii) of (3.1) may be rephrased as follows: the sequence (3.2) 
splits if and only if (3.3) splits for each P. 

Suppose now that the exact sequence (3.2) of A-lattices is split as 
a sequence of -R-modules. Then every element of M can be represented 
uniquely as an ordered pair (Z, n), IÇELL, nÇzN. The action of the 
elements of A is given by a formula 

(3.4) x(l, n) = (xl + Fxn, xn), ^ £ A , 

where i ^ G H o m ^ i V , L). We have thus obtained an i^-homomorphism 

(3.5) F : A - > Horn* ( # , £ ) , 

given by x—>Fxy and it is easily seen that F satisfies the condition 

(3.6) Fxy — x-Fy + Fx-y, x, y G A. 

Conversely, any i^-homomorphism F (as in (3.5)) for which (3.6) 
holds gives rise to an extension of N by L by means of formula (3.4). 
Zassenhaus [263] calls Fa, binding system. For each t^Homn(Ny L), 
the map x-*xt—txy # £ A , is an inner binding system. Assuming that 
N is ^-projective, we have 

Exti(iV, L) ^ binding systems/inner binding systems. 

This holds in particular whenever R is a Dedekind domain, and N 
is any .R-lattice. 

Assuming now that R is a Dedekind domain, let M be any left 
A-lattice, and set M* = HomR(M, R). Then If* becomes a right 
A-lattice by means of the formula 

(m*x)m = ni*(xm), ni* G M*, x G A, m G M. 

There is a natural isomorphism (ikf*)*=lf as left A-lattices. Every 
exact sequence (3.2) of left A-lattices gives rise to an exact sequence 
0—»iV*—»ikf*—»L*—>0 of right A-lattices. Thus there is an ^-iso­
morphism 

ExtI(7\T, L) ÊË ExtI(L*, N*). 
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Consider now the special case where A = RG, and let M be any left 
A-lattice. The above-defined M* can then be made into a left RG-
lattice M', called the contragredient of M, by defining 

(xm*)m = m*(x~~l/m), ni* G M', x G G, m G M. 

(If M affords a matrix representation x—»M(x), xGG, then M' 
affords the representation x—^{Mipcr1))1 where T denotes transpose.) 

I t is easily seen that (RG)'=RG as left i?G-modules, and that there 
is an .^-isomorphism 

ExtRQ(N, L) S ExtBG(L', tf') 

for any pair of left i£G-lattices N, L. 
Call a left i£G-lattice L weakly injective if every exact sequence 

0->L-^ikf-»iV-»0 is i?G-split, where M, N are arbitrary i^G-lattices. 
Then L is weakly injective if and only if its contragredient L' is 
projective. 

4. Higman ideal. Let À be an i?-order, where R is any noetherian 
domain. A A-birnodule is a two-sided A-module T such that 

x(ty) = (xt)yy at = ta, x, y G A, t G 2", a G # . 

A 1-coc^de is a map jFGHomfl(A, T) such that 

Fxy = »Fy + Fa/y, « j G A . 

For each t0ÇzT, the map JP given by 

F* = xto — /<>#, # G A 

is a 1-coboundary. The 1-cohornology group HX(A, T) is defined by 

Jïx(A, 3H) = 1-cocycles/l-coboundaries. 

For example, if iV and Z, are A-lattices, then T = HomR(N, L) is 
naturally a A-bimodule; and if N is ^-projective, then 

H \ A , T) = Ext\(N, L). 

Given a finite group G of order g, a version of Maschke's theorem 
(see Zassenhaus [263], CR 73.22) asserts that 

g-H\RG,T) = 0 

for all i^G-bimodules T. To generalize this result to an arbitrary 
i^-order A, we begin by setting 

t(A) = fi annaH^A, T), 



i97o] SURVEY OF INTEGRAL REPRESENTATION THEORY 169 

where T ranges over all A-bi modules, and ann^ denotes annihilator 
in R. Then i(A) is an ideal in R, called the Higman ideal of A. (See 
D. G. Higman [118], [119], CR §75, for the results in this section.) 

Recall that the algebra A is called separable over F if and only if 
any one of the following equivalent conditions holds: 

(i) For each field E containing F, the algebra F <8> E A is semi-
simple. 

(ii) The algebra A is semisimple, and the centers of its simple 
components are separable field extensions of F. 

(iii) There exists a nondegenerate bilinear form f:A XA—+F satis­
f y i n g / ^ , c) =f(a, be), a, b, cÇzA, and such that if {ai, • • • , an\ and 
{&i, • • • , bn} are i^-bases of A for which/(a», bj) =8*7, then for some 
xÇzA we have 

n 

1 = 2 biXüi. 
1 

(4.1). THEOREM. The ideal i(A) is nonzero if and only if A is sepa­
rable over F. For any maximal ideal P of R, 

i(Ap) = {i(A)}p, f(Ap) = i(Ap) . 

If G is a finite group of order g, then i(RG) = gR. 

Suppose now that A is separable over F, and that A is JR-projective 
(the latter surely holds when R is a Dedekind domain). Starting with 
the bilinear form ƒ in (iii) above, we may compute i(A) as follows. 
Define 

inverse different = 1(A) = {a G A: f(A, a) C R}, 

different = D(A) = {x G A:I(A)-x C A}. 

(4.2). THEOREM. An element a of R lies in i(A) if and only if a is 
expressible in the form 

n 

a == 2L biXai 

for some #G-D(A), where the {ai}, {&,•} are as in (iii) above. 

(For generalizations of the concept of the different, see Fossum 
[84], Watanabe [258], [259].) 

Suppose that A is a hereditary order in the semisimple algebra A ; 
then submodules of free A-modules are projective (Cartan-Eilenberg 
[40, Chapter I, §5]). Since each A-lattice is embeddable in a free 
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A-module, each A-lattice is projective. Thus for such an order A, we 
have Ext\(N, L) = 0 for every pair of A-lattices N, L. On the other 
hand, it may well happen that the Higman ideal i(A) is a proper ideal 
of R, and that jff^A, 7") 5^0 for some T. Since representation theory 
is more concerned with extensions of modules than with cohomology 
of bimodules, it is of interest to investigate the jR-annihilator of Ext. 
In this direction we have 

(4.3). THEOREM. Let R be a Dedekind domain of characteristic 
zero, G a finite group of order g, M an RG-lattice of R-rank m. Sup­
pose that FM is an absolutely irreducible FG-module (that is, 
UomFG(FM, FM)^F). Let aÇ:R. Then 

(4.4) a-ExtRG(M,N) - 0 

for every RG-lattice N if and only if a^.(g/m)R. Dually, if FN is 
absolutely irreducible, then (4.4) holds f or each RG-lattice M if and only 
if aÇz(g/n)R, where n is the R-rank of N. 

References. Reiner [189]; see also D. G. Higman [l20], [ l 2 l ] . 
This result has been generalized by Jacobinski [125] and Roggen­

kamp [208a]. Let R = alg. int. {F}, and set 

F G = X) Ai (simple components), 

Fi = center of A{, Ri = alg. int.fi7»-}» (AilFi) = n^ 

Let D^1 be the inverse different of Ri with respect to R, relative to the 
ordinary trace form from Fi to F. Define the integral ideal di of R by 
setting dTl = DTxr\F. 

Now let Ao be any maximal order of FG containing RG. Since A0 is 
a hereditary ring (see §7), Exti0(iVo, L0) = 0 for each pair of A0-lattices 
NQ, L0. Using this fact, together with arithmetic properties of maxi­
mal orders, one obtains 

(4.5). THEOREM. Let ei be a primitive central idempotent of FG. 
(i) (g/ni)dil is an integral ideal of R. 
(ii) If M, N are RG-latticesfor which either dM = M or eiN = N, then 

(g/ndd^-ExtRGiMtN) = 0. 

(iii) Let M be an RG-lattice such that dM=M, and let a(ER have 
the property that a • Extj^ (M, JV) = 0 for every RG-lattice N. Then 
aCzig/n^dr1. 

References. Parts (i), (ii) are due to Jacobinski [126], and (iii) was 
proved by Roggenkamp [208a], 
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We quote some miscellaneous results on the vanishing of Ext. 

(4.6). THEOREM (BERMAN [21]). Suppose that G has a normal cyclic 
Sylow p-subgroup, and let M, N be Z*G-lattices such that Q*M^Q*N. 
Then 

Extz*0(M, N) = 0. 
V 

Gudivok [lOO] remarks that this no longer holds if in place of Z* 
we use Pp, where P = alg. int. {P} . 

Berman-Lihtman [30 ], generalized by Reiner [194], discuss the 
question as to when Extj^Af, N)~0 for all PG-lattices M, N such 
that PAf, FN are a fixed pair of PG-modules. 

5. Representations over local domains. Throughout this section 
let R be a discrete valuation ring with quotient field P, maximal ideal 
P , residue class field R = R/P. Let P * be the P-adic completion of 
R, with quotient field P*. For any P-lattice AT, let AT* = P*Af, 
AT = Ar/PAf^Ar*/P*AT*. Now let A* be any P*-order; then A 
=A*/P*A* is a finite dimensional P-algebra. If e £ A * is idempotent, 
so also is ë. A fundamental result is 

(5.1). THEOREM ON LIFTING IDEMPOTENTS. Every idempotent in Â is 
of the form êfor some idempotent e£A*. 

References, CR §77 for this specific case. A more general discussion 
of the problem is given in Jacobson [132, Chapter I I I , §8]. 

This theorem is a generalization of Hensel's Lemma; its validity 
means that P-adic methods will play as large a role in integral repre­
sentation theory as they already do in algebraic number theory. The 
most important consequence of (5.1) is 

(5.2). KRULL-SCHMIDT THEOREM. Every A*-lattice is a finite direct 
sum of indecomposable lattices, which are uniquely determined up to 
k*-isomorphism and order of occurrence. 

References. The result, due to Azumaya [3], was rediscovered by 
various authors; see Borevic-Faddeev [32, I I ] , Reiner [186], [193], 
Swan [232]. 

The key step in the proof is 

(5.3). PROPOSITION. Let M be a A*-lattice, and set E(M) 
= Horn A* (AT, AT), Ê(M) =E(Af)/rad E(M). Then M is indecomposable 
if and only if Ê(M) is a skewfield. 

(5.4). COROLLARY (REINER [193]). Let M be a A*-lattice; call M 
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absolutely indecomposable if M remains indecomposable under all 
ground ring extensions. Then M is absolutely indecomposable if and 
only if Ê(M) is afield which is purely inseparable over R. 

Suppose now that A is an iî-order in the separable F-algebra A, 
and let i{A) be the Higman ideal of A. Then i(A) =P*o for some ko, 
and by (4.1), i(A*) = (P*)*. For a A-lattice M, the A-module M/PhM 
will be denoted by (M)k, and a similar notation will be used for 
A*-lattices. 

(5.5). LEMMA. Let M, N be A-lattices, and let k>k0. Given any 
/£HomA((M)fc, (N)k), there exists a map F^Hom^M, N) such that 
ƒ and F induce the same map from (M)k-k0 into (N)k-k0. 

References. Maranda [154], D. G. Higman [120], [121 ], Nazarova-
Roïter [169]. 

Using the preceding lemma, one obtains 

(5.6). THEOREM. Let M, N be A-lattices, X a A*-lattice. 
(i) If M^N then (M)k^(N)kfor all k^O. 
(ii) If (M)k^(N)kfor some k>k0, then M^N. 
(iü) M^N if and only if M*9*N*. 
(iv) If (X)k is decomposable f or some k>k0) then X is decomposable. 
(v) Suppose that for some k>2k0, (X)k contains a A*-submodule U 

as (R)k-direct summand. Then X contains a A*-sublattice Y as R*-direct 
summand, and Y coincides with U modulo (p*)*-*o, 

(vi) If ko = 0, then M^N if and only if FM^FN. 

References. These results are originally due to Maranda [154], with 
a somewhat weaker version of (iv). Improvements and generaliza­
tions are given in Heller [109], D. G. Higman [ l 2 l ] , CR §76. 

The passage from A*-lattices to A-lattices is facilitated by 

(5.7). PROPOSITION. Let L be a A*-lattice, V an A-module such that 
F*L = F*V. Set M = LC\V\ then M is a A-lattice for which M* = L, 
FM=V. 

References. Bourbaki [36, Chapter 3, §3, no. 5 ] ; Heller [109]; 
Takahashi [238]; CR §76. 

(5.8). COROLLARY. If A is a direct sum of full matrix algebras over 
F, then every A*-lattice is of the form R*M for some A-lattice M. The 
Krull-Schmidt Theorem holds for A-lattices. Every idempotent in X is 
of the form ëfor some idempotent e£A. 

REMARK, See Heller [109], CR §76. The same conclusions are 
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valid if we merely assume that A is a direct sum of full matrix algebras 
over skewfields Si such that for each it S{®F* F is also a skewfield. 

(5.9). THEOREM ( R E I N E R [186]). Let L, M% N be A-lattices. Then 
(i) M^^N™ if and only if M^N. 
(ii) M@L?=LN®L if and only if M^N. 

(5.10). THEOREM. Let F' be a finite separable extension of F, and let 
R' be a valuation ring in F' containing R. For M any A-lattice, define 

M' = R'®RM, A' = B! ®RA, 

so that Mf is a A'-lattice. Then for any pair of A-lattices M, N we have 
M^N if and only if M'^N'. 

References. Reiner-Zassenhaus [199]. See Bialnicki-Birula [31a] 
for generalization. 

6. Genus. Throughout this section let A be a semisimple algebra 
over the algebraic number field F, and let R be any Dedekind domain 
with quotient field F. Let A be an b o r d e r in A. By (4.1) the Higman 
ideal i(A) is a nonzero ideal in P , and i(A) annihilates iP(A, T) for 
every A-bimodule T. Let M% N be any A-lattices; since R is a Dede­
kind domain, from (1.2) we see that M is ^-projective. The discussion 
in §3 then yields 

ExtI(J£, N) = H\A, Horn* (M, N)), 

and consequently 

(6.1) i(A) -ExtI(M, N) = 0 for any A-lattices if, N. 

We have denoted by Rp the localization of R at its maximal ideal 
P , and by Rp the P-adic completion of R. Two A-lattices M, N are 
in the same genus (notation: M\/N) if 

(6.2) FM^FN, MP^NP f or each P. 

Denote by T(M) the set of all A-lattices in the same genus as M. 
Since FM^FN implies that MP^NP whenever P^>i(A) (see (5.6)), 
in condition (6.2) it suffices to let P range over the maximal ideals of 
R containing i(A). The requirement FM—FN is usually superfluous, 
and is inserted here for emphasis, since in fact if Mp=Np for even 
one P , then automatically FMÇ=FN. We remark also that by (5.6), 
MP^NP if and only if Mp^Np. 

(Instead of using the Higman ideal, it is sometimes more conveni-
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ent to introduce the finite set 3 of all maximal ideals P of R for which 
Ap is not a maximal Rp-order in A. In that case, M\/N if and only if 
FM^FN and MP^NPy P G 3 . See (7.6).) 

Let us introduce the semilocal Dedekind domain R defined by 

R= n RP. 

Of course F is also the quotient field of R. We set A = RAt M = RM, 
and so on, so M is a A-lattice. 

(6.3). THEOREM. Let M, N be A4attices. 
(i) M\/N if andonlyif M^N. 

(ii) ExtiCW, i\OÊËExti(M, N). 
(iii) AT is decomposable if and only if M is decomposable. 
(iv) M\/N if and only if for every nonzero ideal J in R, there exists 

a A-monomorphism cj>:M~*N such that N/<j>(M) is an R-torsion 
module whose R-annihilator is relatively prime to J. (In particular, if 
<j> can be chosen so that annR(N/<j>(M)) is relatively prime to i(A), then 
MVN.) 

References. CR §81, Maranda [153], Reiner [l8S], Takahashi 
[238]. 

The following generalization of the "strong approximation the­
orem" of algebraic number theory is often useful. 

(6.4). THEOREM. Let W be any A-module. Let S be some finite set of 
maximal ideals of R, and suppose that for each P £ S we are given a 
Ap-lattice X(P) such that 

FP®R* X ^FP ®FW 

as Ap-modules. Then there exists a A-lattice M for which FM=W and 

RP®B M ÊËX ( P ) , P G S . 

References. Bourbaki [36, Chapter 7], Takahashi [238]. 
For an A -module W, we have denoted by <r(W) the collection of 

A-lattices M such that FM^W. If AT, NGa(W)f we call M and N 
Rp-equivalent if Mp=Np. 

(6.5). THEOREM (MARANDA [153], TAKAHASHI [238]). The num­
ber of genera in <r(W) equals the number of A-isomorphism classes in 
<r(W), and this number is given by 
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II kr, 
PDt(A) 

where hp is the number of classes in a(W) relative to Rp-equivalence. 

To determine the number of A-isomorphism classes in cr(W), we 
may first use (6.5) to count the number of genera in <r{W). Then we 
are left with the question of finding the number |T(ikf)| of A-iso­
morphism classes in the genus T(M) containing a A-lattice M. I t may 
happen that | r ( M ) | is not the same for each M(Ecr(W); see for 
example Nazarova-Roïter [167] for the case where A = ZG, G = Sz. 

The A -module W is called absolutely irreducible if W is irreducible, 
and remains irreducible under arbitrary extension of the ground field. 
Since A is semisimple, W is absolutely irreducible if and only if 
HomA(W, W)9*F. 

(6.6). THEOREM (MARANDA [153], TAKAHASHI [238]). Let M be a 
A-lattice such that FM is absolutely irreducible. Then each N^F(M) 
is isomorphic to a A-lattice J M for some nonzero R-ideal J in F. 
Further, JiM~J2M if and only if J2 = / i « for some aÇEF. Hence 
| T(M) | equals the number of ideal classes in R. 

In studying questions of decomposability, it is convenient to 
introduce the following concept: let My N be A-lattices, and call N a 
local summand of M if for each maximal ideal P of R, Np is isomorphic 
to a Ap-direct summand of Mp. (It suffices to assume this condition 
for those P which contain i(A); if i(A) =R, assume instead that FN 
is isomorphic to a direct summand of FM.) 

(6.7). THEOREM. Let M, N be k-lattices such that N is a local sum­
mand of M. Then there exists a decomposition M = X®Y into K-lattices, 
with XET(N). 

References. Jones [136], Jacobinski [128], Reiner [188]. 
A much deeper result of this nature is 

(6.8). THEOREM (JACOBINSKI [129]). Let M, N be A-lattices such 
that N is a local summand of M. Assume that every irreducible A-
module appearing as a composition factor of FN appears with greater 
multiplicity in FM. Then there exists a decomposition M~N®Y for 
some A-lattice Y. 

(6.9). COROLLARY. Let My N be A-lattices in the same genus. Then N 
is isomorphic to a direct summand of M+M. 

Call a A-lattice T faithful if no nonzero element of A annihilates T. 
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The following elegant result was proved by Roïter [212], [217], 
and is essentially equivalent to Theorem 6.8. 

(6.10). THEOREM. Let M% N be A-lattices in the same genus, and let 
T be any faithful k-lattice. Then there exists a k-lattice T'(ET(T) such 
that M+T^N+T\ 

As a consequence of this result, it is possible to prove 

(6.11). THEOREM (ROITER [212], JACOBINSKI [129]). Let A be an 
R-order. There exists a positive integer b depending only on A, such that 
[T(M)\ ^bfor every A-lattice M. 

We shall return to the study of genera in §8. Further references on 
genera are Faddeev [79], [80 ], [82] (the first of these articles is semi-
expository), Drozd-Turcin [75], Jacobinski [128], [130], Roïter 
[210]-[214], Drozd [70a], [706], Roggenkamp [205]. 

7. Maximal orders. The importance of the theory of maximal 
orders in integral representations has become increasingly evident 
from the work of Heller-Reiner [l 15], Jacobinski [126], [128], [129], 
and Swan [234]. We devote this section to a summary of the main 
results of the theory, and refer the reader to the following references: 
Auslander-Goldman [ l ] , Chevalley [41 ], Deuring [56], Roggenkamp-
Dyson [208b], Jacobson [ l 3 l ] , Reiner [198], Schilling [222], Weil 
[260]. 

Assume throughout that R is a Dedekind domain with quotient 
field F. (The more general case where R is a noetherian integrally 
closed domain is treated in Auslander-Goldman [ l ] ; see also Fossum 
[84a].) Let A be a finite dimensional .F-algebra ; an element xÇîA is 
integral over R if x is a zero of a monic polynomial with coefficients 
in R. The set of all such elements x is the integral closure of R in A, 
and is a ring when A is commutative. 

If A is a simple algebra with center F, we may choose an extension 
field E of F for which E ® F A^(E)m. Then each XÇLA maps onto 
1®XÇZE®A, and is therefore representable as a matrix M ( x ) E ( £ ) m . 
The characteristic polynomial 

det(XJ - M(x)) = A™ - T(x)\™~1 + • • • + (-l)WV(x) 
has coefficients in F, and is called the reduced characteristic polynomial 
of x. Call T(x) the reduced trace of x, and N(x) the reduced norm of x. 
Then T\A—»F is an F-linear map, while N:A—>F is multiplicative. 

Returning to the general case of an arbitrary F-algebra A, we call 
J a. full .^-lattice in A if J is an i?-lattice for which F-J = A. For such 
a lattice, define 
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left order of J = Oi(J) = {x G A :xJ C / } , 

right order of ƒ = Or(J) = {x G A : Jx C J}. 

These are P-orders in / , and / is a left Oi(J)-lattice and a right 
O r(/)-lattice. Put 

/ - i = {X£ AiJxJCJ} = {xEA:JxCOi(J)}, 

again a full P-lattice in A, called the inverse of J. 
An P-order in A is a maximal P-order if it is not properly contained 

in any bigger P-order in A. 

(7.1). THEOREM. If A is a separable F-algebra,* every R-order in A 
is contained in a maximal R-order. 

(7.2). THEOREM. Let A be a separable F-algebra, and suppose that 
A =Ai® - • • @Ar {simple components). Let Ff be the center of Ait 

and Ri = integral closure of R in Fi (l^i^r). Then the maximal R-
orders A in A are precisely those orders of the form A%® • • • ©Ar> 

where each A,- is a maximal R-order in Ai. Further, maximal R-order s 
in Ai coincide with maximal Reorders in Ai. Every element of an 
R-order in A is integral over R. When A is commutative, Ri® • • • ®Rr 

is the unique maximal R-order in A. 

For the remainder of this section, assume that A is a separable 
F-algebra. The preceding theorem shows that the study of maximal 
orders can always be reduced to the central simple case. However, for 
the time being, we shall not make such a reduction. 

(7.3). THEOREM. Let A be any R-order in A, and let P range over the 
maximal ideals of R. The following statements are equivalent: 

(i) A is a maximal R-order in A. 
(ii) For each P, Ap is a maximal Rp-order in A. 
(iii) For each P , Ap is a maximal Rp-order in A*. 

REMARK. For each fixed P , (ii) and (iii) are equivalent. 
In the case of central simple algebras, we have 

(7.4). THEOREM. Let Ap be an Rp-order in the simple algebra A with 
center F. Then AP is a maximal Rp-order if and only if Ap is a left 
hereditary ring whose Jacobson radical rad Ap is the unique maximal 
two-sided ideal of Ap. 

8 See §4. When char F=0, this merely means that A is semisimple. Without 
some hypothesis on A, maximal orders need not exist (see Deuring [56], Faddeev 
[80]). 
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(7.5). THEOREM. Let AP be a maximal Rp-order in the central simple 
F-algebra A. Then: 

(i) rad ApDP-Ap, and Ap/rad A P ^Ap/ rad Ap= simple (R/P)-
algebra. 

(ii) Every full two-sided ideal in Ap is a power of rad Ap. 
(iii) Every one-sided ideal in AP (full or not) is principal. 
(iv) Two Ap-lattices M, N are isomorphic if and only if FMÇ=FN. 
(v) The maximal RP-orders in A are precisely the orders of the form 

t~lApt, t — unit in A. 

As a consequence of (7.2) and (7.5), we obtain 

(7.6). THEOREM. Let A be any separable algebra over F. Then every 
maximal R-order A in A is left and right hereditary, and every A-lattice 
is projective. If M and N are A-lattices such that FM—FN, then 
MP=Npfor each maximal ideal P of R. 

REMARK. There exist hereditary orders which are not maximal; 
see Brumer [39], Harada [104], [105], and also §13 of this article. 

We turn next to the multiplicative theory of ideals in maximal 
orders. The first basic result is 

(7.7). THEOREM. Let J be a full R-lattice in A, where A is any sep­
arable F-algebra. Then Oi(J) is a maximal order if and only if 0r(J) 
is a maximal order. 

A normal ideal in A is a full i£-lattice J in A both of whose orders 
Oi(J), Or(J) are maximal. Call J integral if JCOi(J), or equivalently, 
if JQOr(J). If / i s a normal ideal, so is J"1, and the following relations 
are valid: 

0r(J-1) = 0i(7), OiiJ-1) = 0r(J), / - / - 1 = Oi(J), J-i-J = 0r(J). 

Let A be a maximal jR-order in the separable -F-algebra A. By a 
A-ideal in A we shall mean a full i^-lattice J in A for which Oi(J) 
= 0r(J) =A. A prime ideal of A is a maximal A-ideal contained in A. 
Equivalently, a prime ideal is an integral A-ideal $ such that when­
ever $ contains the product of two integral A-ideals, it must contain 
one of the factors. If $ is a prime ideal of A, then A / ^ is a simple 
algebra over the field R/P, where P = Rr\<$. 

(7.8). THEOREM. The set l{A} of A-ideals in A is an abelian group 
relative to the multiplication J- J' of A-ideals. The identity element of the 
group is A itself, and the inverse of J is J~l. Further, I{A) is the free 
abelian group generated by the prime ideals of A. 
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If A is given as in (7.2), and A=AX© • • • ©Ar, then the prime 
ideals of A are obtained by replacing exactly one summand A» by one 
of its prime ideals $ . Furthermore, for each A» there is a one-to-one 
correspondence *p<-»jR$-fYp between the prime ideals $ of At and the 
maximal ideals RiC^ty of Ri- We discuss this in more detail below 
(see (7.13)). 

While the theory of (two-sided) A-ideals in A is not too hard, that 
of one-sided ideals in A is more complicated, since together with A 
one must also consider other maximal orders as well. A product 
J1J2 - • • Jn of normal ideals in A is called proper if 0r{J%) = Oz(/,-+i), 
l^i^n — 1. This product is again a normal ideal, with left order 
Oi(Ji) and right order 0r(Jn)-

(7.9). THEOREM. Let J, ƒ ' be normal ideals with / D J ' . Then there 
exist normal integral ideals Ni, N% such that Jf is a proper product 
N1JN2. If J and J' have the same left order, the f actor N± may be omitted. 

A maximal integral ideal4 is a normal ideal SO? which is a maximal 
left ideal in its left order A (or equivalently, a maximal right ideal in 
its right order A'). The largest A-ideal $ contained in 3D? is a prime 
ideal of A, and A/SDÎ is an irreducible module for the simple algebra 
A/95. We may characterize $ as the A-annihilator of A/2)?. 

If A and A' are maximal orders in A, we may choose a normal ideal 
Jo with left order A, right order A'. The map N-tJ^NJo, NEI{A} , 
gives an isomorphism J {A} =1 {A'}. This isomorphism is independent 
of the choice of Jo. The normal ideals N and J^NJo are said to be 
similar. 

(7.10). THEOREM. Let J be any integral normal ideal properly con­
tained in its left order A. Then J is expressible as a proper product of 
maximal integral ideals 3D?i, • • • , 9)?j: 

/ - 2Ri • • • a»i. 

The number I equals the number of composition factors of the left 
A-module A/ J. The prime ideals associated with the {Wli} are similar 
to the A-annihilator s of the composition factors of A / / , and hence are 
uniquely determined by J up to similarity and order of occurrence. 
Finally, the set of integral normal ideals in A forms a groupoid* relative 
to proper products. 

4 Some authors use the term "indecomposable ideal" instead; this leads to some 
confusion when one studies lattices, and so we propose the clearer terminology 
"maximal integral ideal." 

6 This is Brandt's groupoid; see Jacobson [131, p. 132], 
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For the remainder of this section we shall concentrate our attention 
on the study of maximal orders in central simple algebras. Let A be a 
simple algebra with center F, and say A = (D)n where D is a skewfield 
with center F. We call ((D:F))1/2 the index of A. Let W be an irre­
ducible left A -module, viewed as right P-space of dimension n. Then 

(7.11) A = HomD(W, W), D = Honu(W, W). 

We begin with a pair of theorems relating the study of maximal orders 
in A with those in D. 

(7.12). THEOREM. Let R be a Dedekind domain with quotient field 
Fy and let A be some fixed maximal R-order in D. Let M be any full 
right A-lattice in W, and put A = HoniA(M, M). Then A is a maximal 
R-order in A. Every other maximal R-order in A is of the form 
HomA(iV, N) for some full right A-lattice N in W. 

Furthermore there is a one-to-one inclusion-preserving correspondence 
{the Morita correspondence) X<-»L between the set of all left A-lattices X 
and the set of all left A-lattices L, with 

X = M<8)AL, L = M®KX. 

Here, M — Hom&(M, A) is viewed as left A-, right A-lattice. 

We may embed D in A by identifying each element d&D with a 
diagonal matrix all of whose diagonal entries are equal to d. Keeping 
the notation of the preceding theorem, we have 

(7.13). THEOREM. TO each maximal ideal P of R there corresponds a 
unique prime ideal p of A containing P , and 

P = p H JR, PA = p* for some e. 

Set ty =pA; then $ is the unique prime ideal of A containing P , and 

P = $ H £ , PA = $«, A/$ ^ (A/p)n. 

Both A/*p and A/p are simple (R/P)-algebras. 
Further, the group I\A} of A-ideals in A is free abelian on the set of 

generators ty, one for each maximal ideal P of R. If 9JÎ is any maximal 
left ideal of A, then 9)? contains a unique prime ideal ty of A, and 9JÎ is 
the inverse image under the map A—>A/̂ {5 of some maximal left ideal 
of A/% 

The two preceding theorems show how to reduce questions about 
maximal orders in simple algebras to the case of maximal orders in 
skewfields. Concerning these we have a basic "local" result: 
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(7.14). THEOREM. Let R be a complete discrete valuation ring, D a 
skewfield with center F. Let N:D—>Fbe the reduced norm map. Then an 
element aÇ^D is integral over R if and only if N(a)^R. The integral 
closure AofR in D is a ring, and is the unique maximal order in D. In A 
there is a unique maximal two-sided ideal p, given by 

p = KMWGP). 
In fact, p is a maximal left ideal of A, and every nonzero one-sided ideal 
of A is a power of p. The ideal p is a principal left ideal, and A/p is a 
skewfield of finite dimension over R/P. 

Suppose in particular that R is the P-adic completion of a ring of 
algebraic integers, and let m be the index of D. In that case A/p is afield 
of dimension m over R/P, and furthermore PA = pm. 

Turning now to the global case, let A be a central simple jF-algebra, 
where F is an algebraic number field which is the quotient field of 
some Dedekind domain R. If P is any maximal ideal of R, we may 
form the central simple T^p-algebra Ap] the index mp of Ap is called 
the P-index of A. Set Ap=(S)t, where 5 is a skewfield of index mP; 
let S denote the residue class field of the maximal .Rp-order in 5 
modulo its prime ideal. 

(7.15). THEOREM. Let A be a maximal R-order in the central simple 
F-algebra A, where F is an algebraic number field. Let P be a maximal 
ideal of R, and $ the corresponding prime ideal of A. Denote by mp the 
P-index of A. Then {using the notation above) 

A/sp S (S)t, (S:R/P) = MP, PA = $•*. 

Further, if b is the different of A with respect to R relative to the reduced 
trace map from A to F, then 5̂ appears with exponent mp — l in b. (If 
mp>\, we say that A is ramified at P.) 

Keeping the above notation, let N:A—>Fbe the reduced norm map. 
For a full i£-lattice J in A, define its reduced norm N(J) to be the 
i£-ideal of F generated by the set of elements {N(a) : a £ 7 } . 

(7.16). THEOREM. Ifffllisa maximal integral ideal, its reduced norm 
N($Jl) is the maximal ideal ïffir\R of R. If J is any normal integral ideal 
with left order A, then N(J) is the product of the R-annihilators of the 
A-composition factors of A/J. Further, if J J1 is a proper product of 
normal ideals, then 

N(jj>) = N(J)-N(J'), NiJ-1) = N(J)~\ 

We have denoted by IIP} the group of i?-ideals in F. Set 
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(7.17) I'{R} = {N(a)R : a = unit in ,4}. 

Then it is clear that the reduced norm maps the set of normal ideals 
in A onto IIP}, carrying the set of principal ideals onto I'{R\. The 
factor group I {R} /I' {R} is finite. 

A prime of the algebraic number field F is an equivalence class of 
valuations of F. The finite primes are those which come from P-adic 
valuations of P, where P is a maximal ideal in alg. int. {F}. On the 
other hand, an infinite prime P is one whose class of valuations ex­
tends the ordinary absolute value on the rational field Q. Let FP be 
the P-adic completion of P, where P is some infinite prime of P; then 
either Fp=R (real field) or Fp — C (complex field), and there is an 
embedding eP: F—>Fp. 

Now let A be any central simple P-algebra, and for P an infinite 
prime of P, put A* — Fp ®FA, a central simple Pp-algebra. Then 
ApÇ=(S)t for some skewfield S with center P | , and there are only the 
following possibilities: 

(i) Fp = Ct S = C . 
(ii) FÏ=R, S = R. 
(iii) Fp=R, S — H ( = quaternion skewfield over R). 

In case (iii), we say tha t P ramifies in A, 
Hence for any prime P (finite or infinite) of P, we say that P ram­

ifies in A if and only if Ap is not a full matrix algebra over Fp. The 
following theorems are rather deep. 

(7.18). THEOREM (HASSE) . If A is not a full matrix algebra over P, 
then at least two primes {finite or infinite) of F must ramify in A. 

(7.19). THEOREM (HASSE) . A nonzero element a(EF is the reduced 
norm N(a) of some unit a (—A if and only if ep(a)>0 at every infinite 
prime P of F which ramifies in A. Hence the group I'\R\ defined in 
(7.17) is given by 

FIR} = { a P : a £ P , €p(a)>0 at every infinite prime P of F 
ramified in A], 

Call A a totally definite quaternion algebra if A is a skewfield with 
center P, such that for each infinite prime P of P, Ap=H. This can 
occur only when (A : F) — 4 and Fp=R for every infinite prime P of P. 

(7.20). THEOREM (EICHLER) . Suppose that A is not a totally definite 
quaternion algebra, and let J be a normal ideal in A. Then J is a princi­
pal ideal if and only if the reduced norm N(J)liesinI'{R}. 

8. Further results on genera. Throughout this section let R be a 
Dedekind domain whose quotient field P i s an algebraic number field, 



i97o] SURVEY OF INTEGRAL REPRESENTATION THEORY 183 

and let A be a semisimple .F-algebra: 

A = At © • • • © Ar (simple components). 

(8.1) Ai ̂  (Di)nv Di = skewfield with center Ft-. 

Ri = integral closure of R in F»\ 

Denote by ei the central idempotent of A generating A{. As in §7, 
let l{Rk} be the ideal group in Fk. Let Nk:Ak—>Fk be the reduced 
norm map, and as in (7.17) and (7.19), let 

r{Rk} = {Nk(a)-Rk : a = unit in Ak}. 

Each central idempotent e£A is expressible as a sum e^ + • • • +e*,, 
say. Define 

(8.2) /{e} = n/(**), /'{«} = n > M -

These will be used later. 
Now let I f be a left A-lattice, where A is any i?~order in A, and set 

E(M) = HomA(M, M), E{FM) = HomA(FM, FM). 

(8.2a). LEMMA. E{M) is an R-order in E{FM). If A is a maximal 
order in A, thenE(M) is a maximal R-order in E(FM). 

We shall view M as left A-, right E(M)-lattice. Define 

(8.3) eM = ] £ ei = «<i + • • • + « « . (say). 

Then £M is a central idempotent of A which depends only on FM, 
and we have 

(8.4) E(FM)^t,XDir)k„ 

where Aiy- FM is a direct sum of &„ irreducible A -modules. Now let 
S (A) be the family of all left A-lattices M such that no simple com­
ponent of E(FM) is a totally definite quaternion algebra (see end of 
§7). Thus M&(A) if and only if for each v, l^vSs, either kv>l or 
else Div is not a totally definite quaternion algebra. We shall say that 
the A-lattice M satisfies the Eichler condition if and only if M"£S(A); 
of course this is really a condition on the A -module FM. 

We have denoted by T(M) the genus of M, and by \T(M)\ the 
number of A-isomorphism classes in T(M). Suppose in particular that 
Ao is a maximal .R-order in A, and that Mo is a left Ao-lattice. Since 
E(Mo) is a maximal order in E(FM0), it can be written as 
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E(M0) = ]£"Q<„ where e^0 = eh + • • • + eig, 

and fi»v is a maximal i£t„-order in the ivih simple component of E(FMo). 
Each full left £(ikf0)-ideal J in E(FMo) likewise decomposes as 
J= X)'/»,. Define the reduced norm 

N*(J) = n^(A)e/{^ 0} . 

From §7 we see that if / is principal then N*(J)ÇzI'{eMQ\ Î and if 
Mo&(A0), then the converse holds true by (7.20). Hence we obtain 

(8.5). THEOREM. Let Ao be a maximal R-order in A, and let Mo, No be 
left Ao-lattices. 

(i) NoET(Mo) if and only if FN0^FM0. 
(ii) Each No^T(M0) is A0-isomorphic to MQJ for some full left 

E (Mo)-ideal J in E(FM0). 
-(iii) For Ju J2 full left E(M0)-ideals in E(FMo), M0JI ^ ¥ 0 / 2 if and 

only if J\ — Jia for some unit aÇzE(FMo). 
(iv) The reduced norm map N* maps the set of all full left E(Mo)-

ideals onto I {eMQ}, carrying principal ideals onto I' {euz}. 
(v) If Mo satisfies the Eichler condition, then J is principal if and 

only if N*(J)ÇzI'{eM0}. Therefore 

\T(Mo)\ = [/{«*.}:/'{«*.}], 

and this index is finite. 

References. Chevalley [41 ], Jacobinski [128], [129]. 
Consider now an arbitrary i£-order A in A, and choose some maxi­

mal order A0 containing A. Let f be a full two-sided A0-ideal in A 
(such exist: take f = ÛA0 , with suitable aÇiR)- Given a A-lattice M, 
we may form AoM in FM, and then Mo~AoM is a A0-lattice in FM. 
Call a full left ideal J in E(M0) relatively prime to f if for each maxi­
mal ideal P of R, either \P — (A0)p or else Jp = {E(Mo)} p. 

(8.6). THEOREM (JACOBINSKI [128]). Every A-lattice N in the genus 
of M is A-isomorphic to MC\MoJ for some full left ideal J in E(Mo) 
relatively prime to f. Further, MC\MoJ=M if and only if J = E(Mo)a 
for some aÇzE(M). 

Let a = XI&t be an ideal in the ideal group / { ^ M } ; here i ranges 
over all indices such that eiM5*0. We call a relatively prime to f if 
for each maximal ideal P of R such that \p9£ (A0)p, the numerator and 
denominator of each i?*-ideal a» in Fi is prime to P. The collection 
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of all such ideals a is a subgroup l{eM, f} of finite index in / { ^ M } . 

We now let f j ^ , f} be the subgroup of l\eMy f} generated by all 
principal ideals of the form JV*(A0a), aÇzE(M), which are prime to f. 
Define 

(8.7) V(M,f) = l{eM,ÏÏ /l'{eM,\}, 

SL finite multiplicative group. 

(8.8). THEOREM (JACOBINSKI [128], [129]). The mapping which 
assigns to Mr\M0J the coset of N*(J) in V(M, f) carries the set of 
A-isomorphism classes in T(M) onto V(M, f). When M satisfies the 
Eichler condition, the mapping is one-to-one, and 

| T(M)\ = order of V(M, f). 

This result has many interesting consequences: 

(8.9). COROLLARY (JACOBINSKI [128], [129], ROITER [212]). Given 
an R-order A, there exists a positive integer k depending only on A, such 
that for any pair of A-lattices M and N, we have NÇzT(M) if and only 
if M^^N™. 

(8.10). COROLLARY (JACOBINSKI [128]). For each given R-order A, 
there exists a finite extension field F' of F such that for any pair of 
A-lattices M and N, NÇzT(M) if and only if 

R'<8>RM£ÉR'<g>RN as R'<8)R A-lattices. 

Here, R' denotes the integral closure of R in F'. 

We remark that, in general, R' ®M=Rr®N need not imply that 
M=N (see Berman-Gudivok [27], for instance). 

The strict genus of the A-lattice M, denoted by T*(M), consists of 
all N^T(M) such that A0M^A0N for some maximal order A0 con­
taining A. Jacobinski [128] showed that when M satisfies the Eichler 
condition, then this isomorphism holds for every A0 as soon as it is 
valid for one A0. Hereafter let M satisfy the Eichler condition; up to 
A-isomorphism, the A-lattices in T(M) are of the form N~Mr\M0J 
as in (8.6), and it turns out that N&T8(M) if and only if J = E(Mo)b 
for some & £ J E ( M O ) . Using the fact that each class of full left ideals in 
E(Mo) contains an ideal relatively prime to f, one obtains 

(8.11). THEOREM (JACOBINSKI [128]). If M satisfies the Eichler 
condition, the genus T(M) splits into h strict genera, with h equal to the 
number of classes of full left ideals in E(M0). Each strict genus T8(M) 
contains the same number \T*(M)\ of A-isomorphism classes. Further, 
h= [I {eM}: I'M]. 
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Takahashi [238] and Jacobinski [128] compute |p (Af ) | as the 
number of double cosets in some group. 

(8.12). THEOREM (JACOBINSKI [128], [129]). Let M and N be 
A-lattices satisfying the Eichler condition. Let T be a faithful* Ao-lattice 
satisfying the Eichler condition, where Ao is a maximal order containing 
A. Then NET*(M) if and only if M+ T^N+ T as A-lattices. 

(8.13). THEOREM. Let A be an order in a simple algebra, and let M, N 
be A-lattices in the same genus satisfying the Eichler condition. Then N is 
isomorphic to a maximal sublattice of M. 

References. Drozd [70a], Jacobinski [ l30]. This provides a partial 
answer to a question raised by Roïter [212]. 

9. Projective modules and relative projective modules. Let R be 
a Dedekind ring with quotient field F, and let A be an P-order in the 
P-algebra A. A left A-lattice M is projective if M is a direct summand 
of a free module, or equivalently, if every exact sequence 0—>C7—>F 
—»Af—»0 of A-modules splits. 

(9.1). THEOREM. Let R be a discrete valuation ring with maximal 
ideal P , and set R = R/P, A = A/PA, M = M/PM. _ 

(i) A left A-lattice M is projective if and only if M is a projective 
~K-module. 

(ii) If M and N are projective A-modules, then M~N if and only if 
MQÉN. 

References. Nakayama [ l 6 l ] - [ l 6 3 ] , Reiner [ l 8 l ] , Swan [232], 
CR §77. 

Much deeper results can be obtained when A — RG, as indi­
cated below. 

(9.2). THEOREM. Let R be a discrete valuation ring in the algebraic 
number field F, and let G be a finite group. For a pair of projective RG-
lattices M, N, we have M^N if and only if FM^ÉFN. 

References. This was first proved by Swan [232]. Other proofs are 
due to Rim (unpublished), Giorgiutti [89], and Bass [8]; these make 
use of the nonsingularity of the Cartan matrix of RG (see CR §77). 
A proof of an entirely different nature may be found in Hattori [107]. 

The preceding theorem is one of the key steps in proving the fol­
lowing striking result on projective PG-lattices in the global case. 

(9.3). THEOREM (SWAN [232]). Let R be any Dedekind domain of 
6 This means that for #£A0, xT=0 implies x — 0. 
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characteristic zero, with quotient field F, and let G be a finite group of 
order g. Suppose that every prime divisor of g is a nonunit in R. Let P 
range over the maximal ideals of R. 

(i) An RG-lattice M is projective if and only if for each P dividing 
gR, Mp is RpG-projective, or equivalently, M/PM is (R/P)G-projective. 

(ii) If M is a projective RG-lattice, then FM is FG-free, and for each 
P, MP is RpG-free and M/PM is (R/P)G-free. Hence an RG-lattice is 
projective if and only if it is in the same genus as some free RG-lattice. 

(iii) For each projective RG-lattice M there exists a decomposition 

M ^ RG^ + L 

for some r ̂  0 and some projective left ideal L in RG. Here, RG^r) denotes 
the direct sum of r copies of RG. The ideal L is in the same genus as RG, 
and F-L = FG. 

REMARKS. 1. Part (i) is valid more generally: if A is an .R-order 
in a separable algebra over F, then a A-lattice M is projective if and 
only if Mp is projective for each P dividing the Higman ideal i(A). 

2. The crucial result in the above is part (ii), and especially the fact 
that if M is projective then FM is free. This readily implies the re­
maining results (see CR §78). I t also shows that the group ring RG 
contains no nontrivial idempotent elements; for a direct proof of this, 
see Coleman [44]. 

Now let M, N be any jRG-lattices; then M <8)R N is also an RG-
lattice, with the action of G given by 

x(m ® n) = xm ® xn, x £ G, m £ M, n £ N. 

(9.4). THEOREM (SWAN [232]). If M is any R-free RG-lattice, then 
the RG-lattice RG ® R M (with diagonal action of G,as above) is RG-free 
on (FM: F) generators. Consequently if L is any RG-lattice and N is 
RG-projective, then L ® R N is also RG-projective. 

We turn now to a discussion of the relations between .RG-lattices 
and .RiJ-lattices, where H is a subgroup of G. Given an i^uf-lattice V, 
define the induced -RG-lattice VG as 

VG = RG ®RHVy 

with the elements of G acting on the left on the first factor only. If 
G = Ux{H, then VG= ] C ^ ® V ( a s -R-modules). On the other hand, 
each .RG-lattice M can be restricted to H to give an jRiJ-lattice MR. 

(9.5). THEOREM. Let HQKQG be finite groups, V an RH-lattice, 
M an RG-lattice, and let V' denote the contragredient of V (see end of §3). 
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Then: 
(i) Induction is transitive: (VK)°=VG. 
(ii) Frobenius reciprocity theorem holds: VG ® R M^{V ®R MB)G. 
(iii) (V')G?=L(VGy. 
(iv) The Mackey subgroup theorem and tensor product theorem are 

valid. 

References. The proofs in CR §§38, 43, 44 carry over unchanged to 
the present situation. The Mackey theorems (Mackey [153]) are 
stated in CR(44.2), (44.3). 

If M, N are lattices we write M\ N to indicate that M is isomorphic 
to a direct summand of N. 

(9.6). THEOREM. Let H be a subgroup of G, V=RH4attice, M=RG-
lattice. 

(i) V\(VG)H always. 
(ii) M\ (MH)G if [G:H] is a unit in R. 

References. See CR(63.6), (63.7); the second result is originally due 
to D. G. Higman [116]. 

We introduce next the concept of relative projective lattices. Let M 
be an J?G-lattice, and Ha, subgroup of G. We call M (G, H)-projective 
if any one of the following equivalent conditions holds true: 

(i) M\(MH)G. 
(ii) M\ L° for some RH-lattice L. 
(iii) Every exact sequence of i^G-lattices 0—>X—> Y—>M—>0 which 

is -RÜ-split is also i^G-split. 
(iv) Every exact sequence of JRG-lattices 0—>M—>Y—>W—»0 which 

is -RiJ-split is also i^G-split. 
(v) Let G = (JxiH. Then there exists an element Y£Hom22# (M, M) 

such that ^2iX{ yxTl~ identity map on M. (See CR §63.) 
This concept plays a vital role in Green's theory of vertices and 

sources of indecomposable i?G-lattices. While the theory originally 
dealt with FG-modules, the entire discussion carries over almost un­
changed to i£G-lattices, provided the domain R is sufficiently nice so 
that the Krull-Schmidt theorem holds for i^G-lattices (see 5.2). 

(9.7). THEOREM. Let Rbe a complete discrete valuation ring, and let 
M be an indecomposable RG-lattice. 

(i) There exists a subgroup H of G, called the vertex of My such that 
M is (G, H)-projectivey and such that for K a subgroup of G, M is 
(G, K)-projective if and only if K contains a conjugate of H. The sub-
group H is uniquely determined by M up to conjugacy in G. 

(ii) If H—vertex of M, then there exists an indecomposable RH-lattice 
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L {unique up to conjugacy) such that MIL0. Call L the source of M. 
(iii) If the rational prime p is a nonunit in R, then the vertex of an 

indecomposable lattice is always a p-group. 
(iv) Let K be any subgroup of G such that [G\K] is a power of p, 

where p is a prime which is a nonunit in R. Let V be any absolutely 
indecomposable7 RG-lattice. Then V° is an absolutely indecomposable 
RG-lattice. 

References. Green [90], [91 ], [93], CR §65. 
Other references for this section: Thompson [253], Dress [59], 

[6l]-[63],Conlon [44a]-[44d]. 

10. Grothendieck groups and Whitehead groups. Let A be a ring 
with unity element, and let C be some category of A-modules (always 
left finitely generated modules). Let S be some collection of short 
exact sequences 

(10.1) 0 -> L -» M -> N -> 0, L,M,NEe. 

Form the free abelian group 21 on the symbols (ilf), one for each 
isomorphism class of A-modules in 6. Let 2to be the subgroup of SI 
generated by all expressions (M) — (L) — (N), where in (10.1) we use 
all sequences in the given collection S. We call the additive group 
§I/2Io the Grothendieck group of <B relative to S, and denote it by 
K(e, S). For each M £ e the image of (M) in K(e, S) will be written 
as [M]. 

As general references for this topic, we cite Bass [14], Heller [109], 
Swan [235]. 

Of special interest for us are the following cases: 
(10.2). Choose C the category of all A-modules, S the collection of 

all short exact sequences from G. In this case i£(C, S) is called the 
Grothendieck group of A, and will be denoted by K(A) for brevity. 

(10.3). Take C to be the category of all projective A-modules, and S 
the set of all short exact sequences from 6 (these are necessarily 
split). We call this i£(6, S) the projective class group of A, and denote 
it by P(A). (See Rim [200], [201 ].) 

For the remainder of this section, we assume that A is an .R-order 
in the P-algebra A, where R is any noetherian domain. 

(10.4). Let C be the category of all A-lattices, S the set of all short 
exact sequences from G. Denote by K/(A) the Grothendieck group 
K(§>, (B) thus obtained. An easy argument (see Swan [232]) shows 
that the obvious map [M]—» [M] gives an isomorphism Kf(A)=K(A). 

7 See (5.4). 
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The Grothendieck group K(A) is easily described: if Xi, • • • , Xn 

are a full set of nonisomorphic irreducible A -modules, then K(A) is 
the free abelian group with basis [XL] , • • • , \Xn\. (The same holds 
true for any artinian ring ^4.) Thus when G is a finite group and 
char F=0j we may identify K(FG) with the ring of generalized char­
acters of FG-modules. On the other hand when char 7 ^ 0 , we may 
identify K(FG) with the ring of generalized Brauer characters of 
FG-modules (see CR §§38, 82). 

In analyzing the structure of K(A), one begins by comparing K(A) 
with K(As), where As is gotten from A by passing from R to a ring of 
quotients Rs- Specifically, we quote 

(10.5). THEOREM (SWAN [232], [234]). Let S be any multiplicative 
subset of R (with 1 £ 5 , 0(Jî5), and let Rs be the ring of quotients 
{a//3:aÇ£R, j 8 £ 5 } . SetAs = Rs ®s A. Then there is an exact sequence 
of additive groups. 

^ . / A \ ri e 

Ç * \ P A / K(A)^K(AS)-^O, 

where in the first direct sum P ranges over all those prime ideals in R 
for which PC\S is nonempty. The map 0 is given by [Af]—*[M,s], 
M—A-module. The map rj is defined on each K(A/PA) by viewing 
(A/PA)-modules as A-modules. 

The result can be greatly strengthened when A is a group ring. Call 
a Dedekind domain R semilocal if R has only a finite number of prime 
ideals. The following difficult and important result is due to Swan 
[234]: 

(10.6). THEOREM. Let Rbe a semilocal Dedekind domain, and let G 
be a finite group. Then there is an isomorphism d:K(RG)=K(FG), 
where 6 is the map defined by [M]—*[FM] (as in (10.5), with S chosen 
to be the set of nonzero elements of R). 

(10.7). COROLLARY. Let G be a finite group, and let 3 be some finite 
set of prime ideals of the Dedekind domain R. There is an exact sequence 
of additive groups 

X) K[ — G)->K(RG)->K(FG)->0, 

where in the direct sum P ranges over all nonzero prime ideals of R dis­
tinct from those in the preassigned set 3. 
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A projective A-module M is special if FM is free as A -module. Let 
Po(A) be the Grothendieck group of the category of all special projec­
tive A-modules, using for S the collection of all sequences of such 
modules. Equivalently, Po(A) is the subgroup of P(A) generated by 
special projectives. Denote by C0(A) the subgroup of Po(A) generated 
by the set of all differences 

{ [M] — [N], M} N special projective A-modules, FM S FN}. 

Terminology: 
P(A) = projective class group of A. 

P0(A) = special projective class group of A. 
Co (A) = reduced special projective class group of A. 

(See Rim [200], [201 ], Strooker [229], for further discussion of these 
concepts.) 

There is an obvious mapping 

a : P ( À ) - > £ ( À ) 

gotten by mapping [M] onto [M], for M any projective A-module. 
This induces a map Co (A)—>i£(A). 

An immediate consequence of (10.7) is 

(10.8). THEOREM (SWAN [234]). Let Rbe a Dedekind domain such 
that char F\ [G : l ] . Then there is an exact sequence of additive groups: 

Co(RG) -^ K(RG) -» K(FG) -> 0. 

When P = alg. int. {P} , it follows at once from (9.3) that every 
projective PG-module is special, and is expressible as the direct sum 
of a free module and a projective left ideal L in the group ring P C 
Each element of Co(PG) can thus be expressed as a difference 
[RG] — [L], with L a projective left ideal in RG. The Jordan-Zassen-
haus theorem (2.6) then implies that the group C0(RG) is finite, 
whence also ker 6 is a finite abelian group. 

Keeping the assumption that P = alg. int. {P} , let A0 be any 
maximal P-order in FG containing RG; then [G:l ]A 0CPG. By (7.6) 
every left Ao-lattice is Ao-projective, whence 

K(Ao) ^ Kf(Ao) ^ P(Ao). 

Since each A0-module may be viewed as an PG-module by restriction 
of the operator domain, there is a homomorphism 

JC(Ao)—>K(RG). 
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In the other direction, we may define a map /3: Co(RG)—»Co(A0) by 

0{[M] - [N]} = [Ao ®BGM] - [Ao ®RQN], 

where M, N are special projective i?G-modules with FMÇ—FN. Using 
Theorem 10.6 and its corollaries, Swan [234] proved 

(10.9). THEOREM. Let R — alg. int. {F\, and let Ao be a maximal 
R-order in FG containing RG. Then there is a commutative diagram of 
additive groups, with exact rows: 

CQ(RG) -^ K(RG) -> K{FG) -> 0 

H a, Tres0/ Tl 
0 -> Co(Ao) -+ K(Ao) ~> K(FG) -> 0 

Furthermore, both /3 and res are epimorphisms, and ker 0 is the image of 
Co(Ao)inK(RG). 

REMARK. Swan shows by example that neither /3 nor res o a! need 
be monic. 

Swan's Theorem 10.6 is the starting point for the explicit calcula­
tion of the additive structure of K(RG), i? = alg. int. {F}, due to 
Heller-Reiner [114], [ l i s ] . This calculation uses the concept of the 
Whitehead group i£*(A) of a ring A, which we proceed to define. (Gen­
eral references: Bass [12], [14], Heller-Reiner [114], Heller [ l lO], 
Swan [235].) 

Let A be an arbitrary ring with unity, and consider only finitely 
generated A-modules. Now form the collection of all ordered pairs 
(M, ju) in which M ranges over all projective A-modules, and for each 
M, fj, ranges over all automorphisms of M. Let 33 be the free abelian 
group generated by all such pairs. On the other hand, consider com­
mutative diagrams of projective A-modules, with exact rows and 
with X, ju, v automorphisms: 

(10.10) XI /zj v\ 

Let 33o be the subgroup of S3 generated by all expressions 

(M, M) - (Z, X) - (N, v) 
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arising from diagrams (10.10). Next, let S3i be the subgroup of 93 
generated by all expressions 

(Jf, MM') ~ (M, M) - (M, M') 

where M is any projective A-module, and ju, /x' are any automorphisms 
of M. Then we set 

^ ( A ) = W ( « o + 93i), 

an abelian additive group. The image of (M, /x) in i£*(A) will be 
denoted by [M, /JL]. 

(Alternatively, we may also define 

GL(n, A) 
K1^) = inj lim -7 > 

[GL(n, A), GL(n, A)] 
with the obvious embedding of GL(n, A) into GL(n+l, A). See Bass 
[12], [14] for details.) 

If F* denotes the multiplicative group F- {0}, then K^F^^F*, 
the isomorphism being given by [Af, JU]—->det \x for each vector space 
M over F and each automorphism fx of M. More generally, let D be 
a skewfield, and let D% be the commutator factor group of the mul­
tiplicative group D— {0}. Then Kl(D)Ç^D#, where the isomorphism 
is given by mapping [Af, /JL] onto the Dieudonné determinant of ju. 

Now let R be any noetherian domain, and let A be an .R-order in 
the F-algebra A. Denote by Kt(A) the Grothendieck group of the 
category of i^-torsion A-modules, using for S the set of all exact 
sequences of such modules. For a pair of A-lattices M, N satisfying 
FM=FN, define 

[M/N\ = [M/(M H N)] - [N/(M C\ N)] G Kt(A). 

Now let [Af*, n*\£.Kl(A), with jut* any automorphism of the 
A -module Af*. Choose a A-lattice M such that FM=M*, and set 

A[M*, /**] = [ M / M * ( M ) ] G Kt(A). 

(10.11). THEOREM ( H E L L E R - R E I N E R [114]). The map A\Kl(A) 
—*Kt(A) given above is well defined, and there is an exact sequence of 
additive groups 

K\A) -* Kt(A) ^ K(A) -> K(A) ~> 0, 

with r), 0 analogous to those in (10.S). 

Next take JR = alg. int. {F}, and as in (10.9) let A0 be a maximal 
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i^-order in FG containing RG. Then there is a commutative diagram 
of additive groups with exact rows 

K\FG) -*Kt(Ao) ^K(AQ) ->K(FG) ->0 

u A yi v i e u 
Kl(FG) -* Kt(RG) ^K(RG) -> K{FG) ->0 

in which 7 , 7 ' are restriction maps. Since 7 ' is epic by (10.9), we obtain 

Kt(A0) 
(10.12) K(RG) ^ K(FG) + ker 0, ker 0 ̂  : — 

image of A' + ker 7 
We now give an explicit description of the finite abelian group ker 0. 
From §7 it follows easily that A' is monic, and that 

Kt(Ao)^l{l}, image of A ' ^ / ' j l } , 

using the notation of (8.1) and (8.2) with A = FG. For each i, 1 ^i^r, 
choose a lef t A0-lattice Mi such that FM% is an irreducible ^U-module. 
We proceed to construct a set of "generalized decomposition num­
bers" corresponding to a fixed maximal ideal P of R dividing [G: l ] , 
as follows: let {Pa, • • • , P»xt-} be the maximal ideals of Ri dividing 
P , where l^i^r. Let R = R/P, and let Yi, • • • , Yw be a full set of 
irreducible i£G-modules. For each i and 7, we may view Mi/PijMi 
as 2£G-module; let $ f be the number of its composition factors which 
are isomorphic to Yk, where l^k^w. Now set 

where m* is the index of the skewfield Di occurring in (8.1). (Thus, 
D â H o m i ( M < , FMi).) 

(10.13). THEOREM ( H E L L E R - R E I N E R [114], [US]). The kernel of 7 
is precisely the subgroup JJ.P W(P) of / { l } , where P ranges over all 
maximal ideals of R dividing [G: l ] . Hence 

k e r » S / { l } / ( r { l } . n « ( ^ ) ) , 

^ ( F G ) ^ è ' 2 [ F J f J , 
»=i 

and i£ (PG)^ i£ (PG)+ke r 0 as additive groups. 

I t is also of interest to give an explicit formula for the reduced 
special projective class group CQ(RG). 
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(10.14). THEOREM (JACOBINSKI [129]). Let R = alg. int.{F}, and 
let f be the product of all those maximal ideals P of R for which RpG is 
not a maximal order. Let M be the left RG-lattice defined as follows: 
M = RG{2) if some simple component of FG is a totally definite quaternion 
algebra, while M — RG otherwise. Then 

Co(RG)ç*V{M,\}, 

where V{ M, f} is the group defined in (8.7). 

REMARK. In Theorems 10.9, 10.13, 10.14 and 10.15 (below), in­
stead of assuming that R = alg. int. {F}, we need only assume that 
R is a Dedekind domain whose quotient field is an algebraic number 
field, and that no prime divisor of [G: 1 ] is a unit in R. 

For R any Dedekind domain, we may define a ring structure on 
K(RG) by setting, for each pair of i^G-lattices M and N, 

[M]-[N] = [M ®RN]. 

Here, the elements of G act diagonally on M®N (as in §9). If 1$ 
denotes the i^G-lattice R on which G acts trivially, then K(RG) is a 
commutative ring with unity element [l(?]. Despite Theorem 10.13 
which gives such precise information about K(RG) as additive 
group, very little is known about the multiplicative structure of 
K(RG); see Obayashi [175], S tand [227], Swan [234], Uchida [255]. 
The only general result which we quote is the striking theorem: 

(10.15). THEOREM (SWAN [234]). (ker 0)2 = O, where 6:K(RG) 
—*K(FG) is given as in (10.9), and R = alg. int. {F}. 

Let R be any Dedekind domain; as in §9, we may define a restric­
tion map K(RG)—*K(RH), (x—>XH), for H any subgroup of G. Like­
wise the induction map K(RH)—*K(RG), {y—^yQ), is well defined. 
The analogues of Theorem 9.5, (i) and (ii), remain valid. If 5C is some 
collection of subgroups of G, set 

Km(RG) = £ {K(RH)}GCK(RG), 
H est 

(10.16). THEOREM (SWAN [233]). Let Rbe a Dedekind domain, and 
m a positive integer such that m-K(FG)(ZK^(FG). Then m2-K(RG) 
C.Kw(RG). In particular, if 3C is the collection of all hyper elementary 
subgroups of G {see CR §42), then K(RG)=KSZ(RG). 

This circle of ideas involving the Frobenius reciprocity theorem 
has been systematically investigated by Lam [146]. 
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Now let R be a Dedekind domain of characteristic zero. There is 
a map 

r : P(RG) -» K(FG), [M] -» [FAf], 

and it is of interest to identify the image of r. The elements of K(FG) 
can be thought of as generalized characters (CR §38), that is, as 
differences </>i—02 of characters 0i, <£2 afforded by FG-modules. Call 
an element x £ G R-singular if the order of x is not a unit in R. 

(10.17). THEOREM (SWAN [234]). Let x be a generalized character, 
viewed as an element of K(FG). Then % ^es ^n l^e image ofr if and only 
if x(x) —0 for every R-singular element xÇzG. 

Call G p-solvable if each composition factor of G is either a p-gvoup 
or else has order prime to p. 

(10.18). THEOREM (SWAN [234]). Let R be a Dedekind domain of 
characteristic zero, and let X be an FG-module whose character vanishes 
on all R-singular elements of G. Suppose that for each of those prime 
factors p of [G : 1 ] which are not units in R} the group G is p-solvable. 
Then there exists a projective RG-lattice M f or which X~FM. 

The result is no longer true if the hypothesis on G is omitted. 
The Whitehead group Kl(RG) is considerably harder to deal with 

than K°(RG). Indeed, even the calculation of KX(R) is already diffi­
cult. Bass [13] has shown how to compute the Z-rank of KX(ZG). A 
complete discussion of these problems, as well as a wealth of material 
on related subjects, may be found in the reference by Bass [14]. 

Other references for this section: Krugljak [145], Roggenkamp 
[204], [207]. 

11. Commutative orders and related results. Throughout this 
section, R is a Dedekind domain and A is an i^-order in the jF-algebra 
A. The semiexpository paper by Faddeev [80] will serve as general 
reference for the material in this section. 

For ƒ a full i^-lattice in A> define Oi(J), Or(J) and J~l as at the 
beginning of §7. Call J" right invertible if J'J~x — Oi{J), or equiva­
len t^ , if JN=Oi(J) for some full i^-lattice N in A. If / is right in­
vertible, then J~l is left invertible, and Or(J~l) =Oi(J). 

Suppose M is any faithful left A-lattice not necessarily contained 
in A. (Call M faithful if for \ £ A , \M=0 implies that X = 0.) Since 
A acts on FM, we may define 

Oi(M) = {xE A :xMCM}. 
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This is an i^-order in A, called the left multiplier ring of M, and 
Oi(M)DA. We say that M is an exact A-lattice if A = Ot(M). 

(11.1). PROPOSITION. For J a full left A-lattice in A, set 

J' = {x E A : Jx C A} 9É HomA(J, A). 

Then J is A-projective if and only if Jf -J=Or(J). 

(11.2). PROPOSITION. Let A be commutative, and suppose that J is an 
exact full left A-lattice in A. Then the following statements are equivalent'. 

(i) J is A-projective. 
(ii) / is invertihle. 
(iii) For each maximal ideal P of R, the localization JP is a principal 

Ap-ideal in A. 

Reference. Faddeev [80, Propositions 18.2 and 27.1 ]. 
Following Borevic-Faddeev [34], we introduce the concept of 

orders of cyclic index. Let A be a commutative separable algebra 
over JP, so A is a direct sum of fields Fi, each of which is a finite 
separable extension of F. Let Ri be the integral closure of R in F{. 
Then A0 = ^2'Ri is the unique maximal i£-order in A. An arbitrary 
jR-order A is said to have cyclic index (in A0) if A0 = A+Aco for some 
coGA0. Thus, orders of cyclic index are "relatively close" to being 
maximal orders. 

(11.3). THEOREM (BOREVIÖ-FADDEEV [34]). Let A be a commutative 
separable F-algebra, and A an R-order in A of cyclic index. Then every 
full left A-lattice in A is invertihle. Further, each full left A-lattice M 
in a free A-module A(s) uniquely determines an ascending chain of 
R-order s in A : 

A C A i C ' " C A „ 

such that f or each i, l^iSs, there exists an exact full left Ai-lattice Ji 
in A, and 

M == Ji + • • • + Js as A-latlices. 

The ideal class of the product Ji • • • Js in As is also uniquely deter­
mined by M. This chain of R-orders, and this ideal class, are the only 
invariants of M, and we may in f act choose J»=At-, l^i^s — 1, in the 
above decomposition. 

References. See also Brooks [38]. 
Using a completely different approach, Bass [lO] obtained the 

following fruitful result. 
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(11.4). BASS* THEOREM. Let A. be a noetherian (commutative) inte­
gral domain whose integral closure A in the quotient field of A is finitely 
generated as A-module. Then every finitely generated torsionfree A-mod-
ule is isomorphic to an external direct sum of ideals of A if and only if 
every ideal of A can be generated by two or less elements. 

REMARKS. Let F be the quotient field of A; for I f a A-lattice, we 
call (FM:F) the rank of M. Suppose that A is a noetherian domain 
for which every A-lattice is a direct sum of A-lattices of rank at most 
k. Bass then shows that for each maximal ideal m of A, every ideal 
of Am can be generated by at most k + 1 elements. This in turn implies 
(by a result of I. S. Cohen) that each nonzero prime ideal of A is max­
imal, and that each ideal of A can be generated by Max(2, k + 1) ele­
ments. Taking k~ 1, we obtain the theorem in one direction. 

The proof in the other direction is more difficult. Assume that Â 
is finitely generated as A-module, and that each ideal of A can be 
generated by two elements. The key step is the proof that under 
these hypotheses, every ideal of A is A'-projective for some uniquely 
determined domain A' containing A. 

A related reference is Swan [237], 

(11.5). COROLLARY. Let x be an indeterminate over the quotient field 
F of the Dedekind domain R. Given any finitely generated projective 
left R[x]-module M, there exists an R-laltice M0 such that 

M^R[x]®M0. 

In particular, when R is a principal ideal domain, every finitely gener­
ated projective R[x]-module is free. 

References. The result for the case where R is a principal ideal 
domain was proved by Seshadri [225], and then extended by Bass 
[lO] to Dedekind domains. 

As pointed out by Borevic-Faddeev [35], Bass' Theorem yields a 
partial converse to (11.3). 

(11.6). PROPOSITION. Let A be a finite separable field extension of F, 
and let A be an R-order in A. If every left A-lattice is isomorphic to an 
external direct sum of ideals of A, then A is an order of cyclic index. 

Roïter [215] obtains a partial generalization of (11.4) to the 
noncommutative case: 

(11.7). THEOREM. Let A be a separable F-algebra, not necessarily 
commutative, and let A be an R-order in A. If every left ideal of A can be 
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generated by two elements, then every left A-lattice is isomorphic to an 
external direct sum of left ideals of A. 

In the proof of this theorem, Roïter uses his concept of "divisibil­
i ty" of modules (see §12). We shall return in §13 to the question as 
to other sufficient conditions which guarantee that every indecom­
posable A-lattice is isomorphic to an ideal in A. 

We turn next to some other aspects of orders in commutative 
algebras. Let A be a commutative separable .F-algebra, and let Ao 
be the unique maximal i^-order in A. Let A be any .R-order in A, and 
M a full A-lattice in A(n). Define M0=A0M, and consider the order 
ideals ord(M0/M), ord(A0/A), defined as at the end of §1. 

(11.8). THEOREM (FRÖHLICH [87]). The relation 

ord(M0/M) D {ord(A0/A)}w 

is always true, and these ideals of R are equal if and only if M is 
A-projective. Further, M is A-projective if and only if M is an external 
direct sum X^ Mi with each Mi a A-lattice in the same genus as A. 

We remark that this surprisingly simple criterion for projectivity 
does not extend readily to the noncommutative case (see Ballew [4], 
[4a]). 

Next let A be a field, and let / be a full jR-lattice in A. Then each 
power Jn is also a full .R-lattice in A, and Oi(J)COi(Jn), but these 
orders need not be equal. We have called J invertible if J-L = Oi(J) 
for some full ^-lattice L in A ; if / is invertible, so is each Jn. However, 
it may well happen that Jn is invertible though / itself is not. The 
most striking result of this type is as follows: 

(11.9). THEOREM (DADE-TAUSSKY-ZASSENHAUS [52], [53]). Let 
A be a Z-order in an algebraic number field A, where (A:Q)=d>l. 
Then for every full A-lattice J in A, J4"1 and all higher powers of J 
are invertible. 

This is in fact a special case of their more general result: 

(11.10). THEOREM. Let Abe a noetherian integral domain with quo­
tient field A, such that every nonzero prime ideal of Ais a maximal ideal 
of A. 

(i) For each full left A-lattice J in A, some power of J is invertible. 
(ii) If the integral closure of A in A is finitely generated as A-module, 

then there exists a positive integer n such that Jn is invertible for every J. 
(iii) If A is an R-order {where R — Dedekind domain) and (A:F) =d, 

then Jd~l is invertible f or every full A-lattice J in A. 
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Further references on this topic: Dade [47], Dade-Robinson-
Taussky-Ward [50], Singer [226a] Dade-Taussky [51a]. 

12. Divisibility of modules. This concept of Roïter's [210], [211], 
[213]-[216] has already shown its importance in several investiga­
tions. To begin with, let À be any noetherian ring (with 1), and con­
sider only finitely generated left A-modules. If ikf, N are A-modules, 
denote by M-Hom(ikf, N) the additive subgroup of N generated by 
the set of elements 

{ƒ(*») : ƒ G HomA(M, N), m G M). 

We shall say that M covers N (notation: M>-N) if ikf-Hom(ili", N) 
= iV. For example, M covers every direct summand of each of its 
homomorphic images. (Roïter uses the term "divides" in place of 
"covers," but this conflicts with the standard notation U\ Vindicat­
ing that U is a direct summand of V.) 

Let M' be a submodule of M. Call M' super characteristic if 
M' -Hom(M', M) = M'. For example, if M and N are arbitrary mod­
ules, then M • Hom (Af, N) is a supercharacteristic submodule of N. 

As usual let M(k) denote the direct sum of k copies of ikf. An easy 
argument shows that M>-N if and only if there is a A-exact sequence 
M(k)-+N-*0 for some k. In particular, A>-N for every N. 

A D-submodule of a A-module M is a supercharacteristic proper 
submodule M' covered by M, and such that for M" a supercharacter­
istic submodule of M, M' + M" = M implies M" = M. The sum of all 
D-submodules of M is again a D-submodule, the largest such in M, 
and is denoted by D(M). Its importance stems from 

(12.1). THEOREM (ROÏTER [213, THEOREM 2]). Let Rbe a complete 
discrete valuation ring, A an R-order in the separable F-algebra A, and 
let M be a left A-lattice. Then D(M) = 0 if and only if for each k, every 
exact sequence of A-lattices of the form 

is split. In particulart A is hereditary if and only if D(A) = 0 . 

We return briefly to the general situation for the following basic 
idea. Let A be any noetherian ring; a left A-module M is said to have 
a normal decomposition if M can be expressed as a direct sum of 
nonzero submodules: M=Mi® • • • ®Mr, r > l , such that M{>-Mj 
for l^i<j^r. If no such decomposition exists, call M normally 
indecomposable. 

(12.2). THEOREM. Let Abe as in (12.1), and let M, N be left A-lattices 
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such that N>-M. If N is normally indecomposable, or if HonuCiV, N) 
is commutative, then every exact sequence M—+N—+0 is A-split. 

Let B be an arbitrary finite dimensional algebra over a field F, 
and assume B has a unity element. If in place of A-lattices we con­
sider finitely generated ^-modules, then the analogues of Theorems 
12.1 and 12.2 remain valid. The latter theorem is a key step in 
Ruiter*s recent proof [216] of the Brauer-Thrall conjecture: 

If there exist infinitely many nonisomorphic indecomposable B-mod-
ules, there cannot be a uniform upper bound on their dimensions over F. 

13. Hereditary orders and related results. Throughout this section 
let R denote a Dedekind domain, and let A be a separable /^-algebra. 
An i^-order A is hereditary if every left ideal of A is a projective A-
module. In our case, this is equivalent to the condition that every 
left A-lattice be projective. 

The material in this section comes from the work of Brumer [39], 
Drozd-Kiricenko [71 ], Drozd-Kiricenko-Roïter8 [73], and Harada 
[104]- [106]. One may also consult the lecture notes by Roggenkamp-
Dyson [208b]. 

(13.1). THEOREM. Let A be an R-order in A. 
(i) If A is hereditary, so is every bigger order. 
(ii) A is hereditary if and only if for each maximal ideal p of R, the 

order Ap is hereditary. 
(iii) A decomposition of A into simple components gives rise to an 

analogous decomposition of every hereditary order in A. 
(iv) If A is a simple algebra with center F', then the center Rr of a 

hereditary R-order A in A is a Dedekind domain with quotient field F'. 
(v) If A is hereditary, every A-lattice is isomorphic to an external 

direct sum of full A-lattices in irreducible A-modules. 

Parts (ii)-(iv) of the preceding theorem enable us to reduce the 
study of hereditary orders to the case where A is a central simple 
algebra, and Rp is a discrete valuation ring. The main results in this 
case are as follows (Brumer [39]): 

(13.2). Let D be a skewfield with center F, and let A = HomD (Vt V) 
==(jD)n, where F is a right vector space over D of dimension n. Let 
A be a maximal i?p-order in D; then its Jacobson radical rad A is the 
unique maximal two-sided ideal of A (see (7.13)), and we define the 
skewfield Î2 (over R/p) by 

A/rad A ^ (ti)i for some /. 

8 Abbreviated as D-K-R [73] hereafter. 
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On the other hand, we have 

FP ®FA^ (B)m for some skewfield B, 

and indeed m = In. 
A A-chain S of period r is a strictly decreasing chain of full right 

A-lattices in V: 

8: • • • E_! DEo D E i D - • • DPr- i DPr D- • • 

such that Ek+r = P* • (rad A) for each fe. Set 

A = HomA(S, 8) = {ƒ G A:f(Eh) C P* for all * } . 

Then A is a hereditary Pp-order in A, and 

rad A = {fGA: f(Ek) C £*+i f o r a11 ^ } • 

The quotient A/rad A is a direct sum of r full matrix algebras over 
the skewfield £2, and for Q^k^r — 1, the &th simple component (Q)Wfc 

is the ring of (A/rad A)-endomorphisms of Ek/Ek+u The sequence 
(no, tiu ' ' ' y fir-i) is called the invariant of 8, and satisfies 
n0+ • • • +» r _i = m; the invariant is defined up to cyclic permuta­
tion. 

Now let us define 

Pk = {ƒ G A: ƒ(£*) C P*+i}, Tfc = HomA(E*, Ek). 

Both P* and T* depend only on k (mod r). There are precisely r 
distinct maximal two-sided ideals in A, namely Pi , • • • , P r . There 
are precisely r distinct maximal Pp-orders in A containing A, namely 
I \ , • • • , Tr, and their intersection is A. Furthermore, 8 is the set of 
all left A-, right A-lattices in V, and (rad A)Ek = Ek+i for all fe. 

Conversely, if A is a hereditary Pp-order in A} the set of all (A, A)-
lattices in V forms a A-chain 8 of period r (for some r ^ w ) , and 
A = HomA (8, 8). There is a one-to-one inclusion-reversing corre­
spondence between Pp-orders containing A, and subchains of 8. 

Let M be an indecomposable A-lattice, where A is a hereditary 
Pp-order in A ; then M is isomorphic to a full A-lattice in V, and 
HomA (Af, M) is a hereditary Pp-order in D. If D has a unique maxi­
mal Pp-order A (which is certainly true when D = Ft and also when 
P is a complete discrete valuation ring), then HomA (Af, Af)=A; 
further, under this assumption, the invariant (n0, • • • , wr-i) com­
pletely determines the structure of A. Specifically, if A' is another 
hereditary Pp-order in A, whose invariant is a cyclic permutation of 
(no, • • • , wr-i), then A/ = xAx"~1 for some unit xÇzA. Finally, when 
HomA (Af, Af) — A, we may display A as the set of all those matrices 
in (A)w of the form 
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TA m m • • • smn 
A A 2 » . • .3DU 

A A A • • -2fl , 

LA A A • • • A J 

partitioned into »<X»i blocks all of whose entries belong to the in­
dicated symbol (either A or SDÎ, where 9K = rad A). 

Returning to the global case, we have 

(13.3). THEOREM. Let A be a central simple F-algebra. Suppose that 
Ao is some fixed R-order in A. Let there be given for each maximal ideal 
p of R, a hereditary Rp-order A(p) in A, satisfying A(p) = (A0)p for all 
but a finite number of p's. Set 

A = n A(#). 
p 

Then A is a hereditary R-order in A, and is the unique R-order such 
that Kp =A(p) for all p. If we set 

M(p) = A H rad A(p) 

then M(p) is a full two-sided ideal in A, and satisfies 

(M(p))p = rad A(p), (M(p))q = Aa if q * p. 

Let #(A) be the set of full two-sided A-ideals in A. An element 
/ £ ^ ( A ) is right A-invertible if there exists a J'&(A) with JJ' =A. 

(13.4). THEOREM. Let A be a hereditary order in the central simple 
F-algebra A. Then Ô{A) is the free abelian group on the generators 
{M(p)lp = maximal ideal of R}, and for JG^(A) , we have J"""1 

= {xEA: tf/CA}. 

We may mention some other criteria for an order to be hereditary: 

(13.5). THEOREM (D-K-R [73]). Let Abe an R-order in the separable 
algebra A. Then the following are equivalent: 

(i) A is hereditary. 
(ii) There are no nonzero D-submodules of A (see §12). 
(iii) Given any pair of R-orders I \ , T2 in A such that ACTi CT2 , 

there exists an R-order F3 in A for which ACT 3 and r i = r 2 n r 3 . 
(iv) Every maximal R-order in A containing A is projective as left 

A-module. 

For a hereditary order A we know that every left A-lattice is iso-
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morphic to an external direct sum of left ideals9 in A. We have seen 
in §11 that this property may hold for a larger class of orders. Here 
we shall sketch some further results in this direction. 

(13.6). Let A be an i^-order in the separable F-algebra A. Call A a 
Gorenstein order if any one of the following equivalent conditions is 
true: 

(i) Ext i (F , A) = 0 for every left A-module F. 
(ii) Ext l (M, A) = 0 for every left A-lattice M. 
(iii) A* covers A (see §12), whereA*is the left A-module defined by 

A* = Hom i 2(A, R). 
(iv) For every exact10 faithful left A-lattice M, M • HomA (M, A) = A. 
(v) Every exact full left A-lattice in A is right invertible.11 

(Five more statements, each equivalent to (i), may be obtained by 
interchanging "left" and "right" in all of the above.) 

References. D-K-R [73], Bass [ i l ] , Nazarova-Roïter [170]. 
A A-lattice M is called weakly infective if every exact sequence 

0—>M—>X—•>F—»0 of A-lattices is split; in other words, M is weakly 
injective if and only if M is a A-direct summand of every bigger 
A-lattice of which M is an indirect summand. 

(13.7). PROPOSITION. Let A be an R*-order in a separable algebra. 
Then A is a Gorenstein order if and only if every projective left A-lattice 
is weakly injective, or equivalently, if and only if every weakly injective 
A-lattice is projective. 

(13.8). DEFINITION. An jR-order A in A is a Bass order if every 
-R-order in A containing A is a Gorenstein order. 

Every hereditary order is a Bass order. Roïter [215] proved that 
if every bigger jR-order can be generated by two elements as left 
A-module, then A is a Bass order. When A is commutative, the con­
verse also holds (Bass [ l l ] ) . 

(13.9). THEOREM (D-K-R [73]). Let A be an R-order in A. The fol­
lowing are equivalent: 

(i) A is a Bass order. 
(ii) A* is a Bass order for each maximal ideal p of R. 
(iii) The set of all full two-sided A-lattices in A forms a groupoid1* 

relative to proper^ products. 
9 Indeed, part (v) of Theorem 13.1 asserts an even stronger result. 
10 See definition immediately preceding (11.1). 
11 See beginning of §11. 
12 See Jacobson [131, p. 132]. Compare this theorem with the earlier Theorem 

7.10. 
13 The product JT is proper if replacing either factor by a larger lattice increases 

the product. 
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(13.10). DEFINITION. Let Fi, • • • , V% be a f uil set of nonisomorphic 
irreducible A -modules, and let M be a A-lattice. We shall say that M 
has signature (mi, • • • , mi) if 

(13.11). DEFINITION. Let A be an jR*-order in the separable algebra 
Ay and suppose that A is a Bass order. We consider three types of 
orders: 

Type I. The algebra A has two simple components, and every inde­
composable A-lattice has signature (1, 0), (0, 1) or (1, 1) with the 
last type actually occurring. 

Type II. The algebra A is simple, and every indecomposable A-
lattice has signature (1) or (2), with the latter type actually occurring. 

Type I I I . The algebra A is simple, and every indecomposable 
A-lattice has signature (1). 

(13.12). THEOREM (D-K-R [73, THEOREM 9.7]). Every Bass Re­
order in a separable algebra is a ring direct sum of Bass orders of Types 
I, II and III. 

REMARKS, (i) Hereditary orders have Type I I I . 
(ii) If G is cyclic of order p, ZPG is of Type I. 
(iii) Those Z*-orders in the matrix ring (Q*)2, having finitely many 

indecomposable lattices, are of Type II (see Drozd-Kiricenko [7l]). 
(iv) Quadratic Z*-rings are nonhereditary Bass orders of Type III 

(see Borevic-Faddeev [33]). 
Detailed theorems on the structure of Bass orders are given in 

D-K-R [73]. Other references for this subject: Drozd-Roïter [74], 
Roggenkamp [204]. Also see Michler [l60a], and references therein, 
for general results on hereditary orders. 

14. Finiteness of the number of indecomposable representations. 
Let i ? b e a Dedekind domain with quotient field F, and let À be an 
i^-order in the separable i^-algebra A. Denote by n(A) the number 
of isomorphism classes of indecomposable left A-lattices. When is 
n(A) finite? 

(If the algebra A is not semisimple, it follows from Faddeev [80, 
Proposition 25.1] that n(A) is infinite. For this reason we limit our at­
tention to separable algebras hereafter.) 

The basic tool for passing from the global to the local case is as 
follows: 

(14.1). THEOREM. Let F be an algebraic number field. Then n(A) 
is finite if and only if f or each maximal ideal P of R> n(Ap) is finite. 
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References. Jones [13S], Kneser [143], CR §81A. 
Let G be a finite group, p a prime, and denote by Gp a Sylow p-

subgroup of G. The preceding theorem tells us that n(RG) is finite if 
and only if n(R^G) is finite for each P . 

(14.2). THEOREM. Let the rational prime p be contained in the maxi­
mal ideal P of R. Then n{RpG) is finite if and only if n(RpGp) is finite. 

REMARK. This follows readily from Theorem 9.6. 

(14.3). THEOREM. Keep the above notation. If Gp is not cyclic, or if 
GP is cyclic of order greater than p2, then n{R%Gv) is infinite. 

The above result was proved by Borevic-Faddeev [32, II] and 
Heller-Reiner [112, I I ] . I t is also a special case of a more general 
result: 

(14.4). THEOREM (DADE [48]). Let R be any noetherian domain with 
quotient field F, and let A be any finite dimensional F-algebra which is 
a direct sum of at least four subalgebras. Let A be an R-order in A, and 
suppose there exists a maximal ideal P of R for which A/PA is com­
pletely primary.u Then w(A) is infinite. 

In particular, n{k) is infinite whenever A is an indecomposable 
Rp-order in a semisimple algebra having f our or more simple components. 

Generalizations of this result may be found in Drozd-Roïter [74], 
Gudivok [95]-[101], Jacobinski [127]. 

In the other direction, we have 

(14.5). THEOREM. Let Gp be cyclic of order p or p2. Then n(ZpGp) is 
finite. 

References. Berman [25], Berman-Gudivok [29], Heller-Reiner 
[112, I ] . 

(14.6). COROLLARY. The number of isomorphism classes of indecom­
posable ZG-lattices is finite if and only if for each prime p dividing 
[G: 1 ], Gp is cyclic of order p or p2. 

In order to generalize (14.5) and (14.6), it is necessary to determine 
for which cyclic ^-groups H the number n(RpH) is finite. Many par­
tial results have been obtained (see Gudivok [lOl] for a detailed 
description, as well as for calculations which give a solution in most 
cases). The complete solution was obtained by Jacobinski [127], who 
proved the following: 

14 A ring r is completely primary if r / r a d r is a skewfield. 
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(14.7). THEOREM. Let R = alg. int. {F}. For each maximal ideal P 
of R, let p be the rational prime contained in P, and let e(P) be the larg­
est integer for which pRQPe(p). Let Gp be a Sylow p-subgroup of G. 
Then n(RG) is finite if and only if for every maximal ideal P dividing 
[Gil], one of the following conditions holds: 

(i) e(P) = 1 and Gp is cyclic of order p2. 
(ii) e(P) 3*2, p>3, and Gp is cyclic of order p. 
(iii) e(P) =g 3, p = S, and Gp is cyclic of order p. 

As a matter of fact, Jacobinski [127] derived this as a consequence 
of his much more general theorem, which gives necessary and suffi­
cient conditions for the finiteness of n(A), where A is any commuta­
tive .Rp-order in a separable algebra. This problem has also been 
solved by Drozd-Roïter; their results are easier to state, though 
perhaps more difficult to apply. 

(14.8). THEOREM (DROZD-ROÏTER [74]). LetR = alg. int. {F}, and 
let A be an R-order in the commutative semisimple algebra A. Let Ao 
be the unique maximal R-order in A, and define rad(A0/A) as the inter­
section of the maximal A-submodules of A0/A. Then n(A) is finite if and 
only if both of the following conditions are satisfied : 

(i) As A-module, Ao/A can be generated by two elements. 
(ii) rad (A0/A) is a cyclic A-module. 

We mention one further general result. 

(14.9). THEOREM (JACOBINSKI [129]). Let F be an algebraic number 
field, and let A be any R-order in the semisimple F-algebra A. Let M 
be some fixed A-lattice, and let BM be the collection of direct summands of 
the lattices M, ikf(2), ikf(3), • • • . Then the number of isomorphism classes 
of indecomposable lattices in BM is finite. In particular, there are finitely 
many isomorphism classes of indecomposable projective A-lattices. 

Other references: Roggenkamp [208]. 

IS. Representations of specific groups and orders. The aim of this 
section is to present a guide to the many articles containing explicit 
calculations and results on the classification of A-lattices, where A is 
some order. 

1. ZG-lattices, G = cyclic group. 
(a) [Gil]=p. References: Diederichsen [57], Reiner [182], CR 

§74. 
(b) [Gil] = 4 . References: Diederichsen [57], Knee [142], Ma-

tuljauskas [156], Roïter [209], Troy [254]. 
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(c) [ G : l ] = £ 2 . References: Berman-Gudivok [27]-[29], Heller-
Reiner [112], [113]. 

(d) [G: l ] squarefree. References: Knee [142], Oppenheim [176]. 

2. ZG-lattices, G arbitrary. 
(a) G = dihedral group of order 2p. References: Leahey [149], 

Lee [150], Matuljauskas [157], Nazarova-Roïter [167]. 
(b) G = nonabelian group of order pq (p, q distinct primes). 

Reference: Pu [179]. 

3. In the following cases, there are infinitely many indecomposable 
ZG-lattices, and these are fully classified: 

(a) G = abelian (2, 2)-group. Reference: Nazarova [164]. 
(b) G = At. Reference: Nazarova [165]. 

4. Further references on integral representations of groups: 
Barannik-Gudivok [ó], Berman [2l]-[25] , Berman-Gudivok [27]-
[29], Berman-Lihtman [30], Drobotenko [65], Gudivok [95] - [ l0 l ] , 
Gudivok-Rud'ko [102], Jones [136], [137], Kneser [143], Matul-
jauskas-Matuljauskene [159], Nazarova-Roïter [168], [ l 7 l ] , Reiner 
[187], [190], [191], Roggenkamp [202], [203]. 

5. Representations over residue class rings Z/mZ: Drobotenko-
Drobotenko-2ilinskaja-Pogoriljak [66 ], Drobotenko-Gudivok-Liht-
man [68], Drobotenko-Lihtman [67], Hannula [103], Nazarova-
Roïter [169]. 

6. Representations of orders in algebras: Bass [ l l ] , Borevic-
Faddeev [34], [35], Drozd [70], Drozd-Kiricenko [71 ], Drozd-
Kiricenko-Roïter [73], Drozd-Roïter [74], Drozd-Turcin [75], 
Faddeev [81], [83], Jacobinski [127], Kaplansky [l40], Kiricenko 
[141], Nazarova [166], Nazarova-Roïter [170], [ l 7 l ] . 

16. Representation rings. Let R be a Dedekind domain whose 
quotient field F is an algebraic number field, and let A be an R-
order in the semisimple /^-algebra A. By the representation group of A 
we shall mean the abelian additive group a (A) generated by the sym­
bols [M], one for each isomorphism class of A-lattices, and with rela­
tions [M]= [M']+[M"] whenever MÇ*Mf+M". If M and N are 
A-lattices then [M] = [N] in a (A) if and only if M+X^N+X for 
some A-lattice X. 

(Note that a(A) is just the Grothendieck group K(6, S) of §10 
where <B is the category of all left A-lattices and S the collection of 
all split short exact sequences from 6.) 
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Let us consider the additive homomorphism 

<t>: fl(A) -> £ a(Ap), 
p 

where P ranges over all maximal ideals of R containing the Higman 
ideal i{h) defined in §4. 

(16.1). THEOREM ( R E I N E R [195]). The kernel of 4> is precisely the 
torsion submodule of the additive group a (A), and may be characterized 
as the finite group consisting of all elements 

{[A] — [M] : M G genus of A}. 

As in (6.2), we introduce the semilocal ring R defined by 

R= (] Rp, 
P=H(A) 

and set A = RA. Then the map 0 factors through a(Â), that is, we 
may write 

a(A) —> a(k) -+ ]T) ' <*0M-
M # P=>t(A) 

Here fx and 0 ' are homomorphisms with $'-jtt=<£, and p is epic, 0 ' is 
monic. The additive group a (A) is generated by indecomposable 
genera; these need not form a free Z-basis of a(A), however, since the 
Krull-Schmidt Theorem is not generally true for A-lattices (see §19). 
Nevertheless, a(Â) is Z-free, since </>' embeds it in a Z-free module. 

More generally let (B be some category of left A-lattices closed 
under formation of direct sums, and let S be the collection of all split 
short exact sequences from (B. The relative Grothendieck group 
K((B, S) will be denoted briefly by a((B). Just as above we may con­
sider the map 

<t>: 0((B)^Xya((B*), 
p 

where now P ranges over some nonempty finite set of maximal ideals 
of R, including all those for which Ap is not a maximal order. Jacob-
inski [129] showed that the kernel of cj> is precisely the torsion sub­
group of a((B), and can be given explicitly as a subgroup of V(M1 f) 
for some suitably chosen A-lattice M in the category (B. (Here, 
V(M, f) is as defined in (8.7).) 

(16.2). THEOREM (JACOBINSKI [129]). Let M be some fixed A-lattice, 



210 IRVING REINER [March 

and choose (B to be the category of all K4attices which are direct summands 
of M(w) for some n. Then (see §8 for notation) : 

(i) ker <£== V(M(t\ f), where t = l if M satisfies the Eichler condition, 
while t = 2 otherwise. 

(ii) The image of <j> is a finitely generated free Z-module. 

REMARK. Theorem 14.9 follows readily from (ii). On the other 
hand, Theorem 10.14 is the special case of (i) in which M=À. 

When A = RG, we can make a(A) into a commutative ring, denning 
multiplication by [M][iV]= [M®RN], with the elements of G act­
ing diagonally on M®N. I t follows at once from (16.1) that (ker <£)2 

= 0. On the other hand, while both a(RPG) and a(RpG) are free 
Z-modules, very little is known about their multiplicative structure. 
Up to this point, attention has centered on the question as to whether 
a(RPG) can contain any nonzero nilpotent elements; the correspond­
ing question for a(kG), where k is a modular field, has been only 
partially settled.f 

(16.3). THEOREM ( R E I N E R [ l90]-[ l92]) . Let RP be a valuation ring 
in F, and let G contain a cyclic subgroup of order n, where nÇiP2; and 
if 2 £ P assume further that w £ 2 P . Then a(RpG) and a(R%G) contain 
nonzero nilpotent elements. 

On the other hand, suppose that [Gil] is squarefree. Then a(ZvG) and 
a(Zp G) contain no nonzero nilpotent elements. 

Rud'ko [219] has determined the multiplication table for the ring 
a(ZpG), where G is cyclic of order p2. 

Complementing the preceding theorem, we quote 

(16.4). THEOREM (ZEMANEK [265]). If G has a noncyclic Sylow 
p-subgroup, then a(ZG)f a(ZpG) and a(Z*G) all contain nonzero nil­
potent elements. 

17. Group rings. Let G, H be finite groups, and K a field. I t is 
known that the group algebra KG need not determine the group G 
up to isomorphism. Thus, for example, Berman [20] proved that if 
p is an odd prime, and G, H are nonisomorphic noncommutative 
groups of order pz, then QG=QH. On the other hand, Passman [178] 
showed that if K is a field of characteristic p, there exist many non­
isomorphic groups G, H with KG—KH. For a survey of the subject 
of group algebras, we refer the reader to Holvoet [124]. 

Now let R = slg. int. { F}. The following problem is still unsettled: 

t Using the results of [265 ], Zemanek has recently shown that a(kG) contains non­
zero nilpotent elements whenever char &=p>2, and G is an abelian group of type 
(P,P). 
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If RG=RH, does it necessarily follow that G=H? Partial answers so 
far obtained are given below: 

(17.1). THEOREM. If G, H are abelian and ZG^ZH, then G^H. 

References: G. Higman [123], CR §37. 

(17.2). THEOREM ( M A Y [160]). If ZG^ZH, then G and H have 
isomorphic commutator factor groups. 

(17.3).THEOREM. IfG,Haremetabelian groups, then ZG—ZHimplies 
that G^H. 

References: Jackson [l24b], [124c], Whitcomb [261 ] . 

(17.4). THEOREM (PASSMAN [178]). Let 2? = alg. int. {F}. The 
integral group ring RG uniquely determines the lattice of normal sub­
groups of G, and also the upper and lower central series of G. If Z\(G) 
is the center of G, and Z2(G)/Z\(G) is the center of G/Z\(G), then 
RG^RH implies that Z2(G)^Z2(H). Hence if G is nilpotent of class 2, 
and RG^RH, then G^H. 

(17.5). COROLLARY. If G/Zi{G) is a p-group of order at most p*t 

then RG^RH implies that G^H. 

The article by Passman [178] contains many other results of this 
nature. 

Also of interest is the question of determining the units in the group 
ring RG. 

(17.6). THEOREM. Let R = alg. int. {F}. Any unit of finite order in 
RG is of the f or m ex, where x £ G and e is a root of unity in R. 

References. G. Higman [123], CR §37. 
For further discussion of the units in RG, and their significance 

for algebraic K-theory, we refer the reader to Bass [14, Chapter 11, 
§7]. 

Let J denote the augmentation ideal of ZG, that is, 

/ = £ ' Z(x - 1) 
where x ranges over all elements of G except 1. Gruenberg [94] 
proved : 

00 

fi In = 0 if and only if G is a ^-group. 

For other results of this nature, as well as for a general algebraic 
study of group rings, see Connell [45], Passman [177], [178]. 
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Further references on group rings: Banaschewski [5], Berman 
[16]-[20], Bovdi [37], Cohn-Livingstone [42], [43], Larson [147], 
Saksonov [220], [221], Schneider-Weissglass [223], Sehgal [224], 
Takahashi [239]. 

18. Algebraic number theory. Clearly the methods of algebraic 
number theory play a large role in the study of integral representa­
tions of orders. Recently, however, representation theory has begun 
to yield results in algebraic number theory. The chief application 
deals with the following problem : 

Let R be a Dedekind domain with quotient field F, and let F' be 
a finite normal separable field extension of F, with Galois group G. 
Denote by R' the integral closure of R in F'. Then the elements of G 
act on R't and R' is an JRG-lattice. What can be said about R' as 
-RG-lattice? 

More generally, an i£'-ideal J in F' is ambiguous if a(J)=J for all 
<r£G. Each ambiguous ideal / in F' is also an i£G-lattice, and J is 
RG-îree if and only if J has a normal integral basis over R (that is, 
/ = ^CTÇGR'<?(%) for some x £ J ) . In particular, then, R' has a normal 
integral basis over R if and only if R'Ç^RG as jRG-modules. 

(i) Let R = alg. int. {F}. Call F' tamely ramified over F if no maxi­
mal ideal of R divides the different of F' over F, or equivalently, if 
some element of R' has trace equal to 1. In this case, every ambigu­
ous ideal is i^G-projective; conversely, if Rf is jRG-projective, then 
F' is tamely ramified over F. 

(ii) Hubert proved that if F' is an abelian extension of the rational 
field Q, then R'~ZG if and only if F' is tamely ramified over Q. 
(See Ullom [256], [257] for a partial generalization to the case of 
ambiguous ideals in JR'.) 

(iii) Fröhlich [86] gave a necessary and sufficient condition for the 
isomorphism R'=RG, assuming that F' is an abelian extension of F 
of a suitably restricted type (Kummer extension). 

(iv) Leopoldt [ lS l ] showed that when F' is an abelian extension 
of Q, then 

Oi{R') = {xEQGix-R' CR'} 

is isomorphic to R' as left ZG-module. Further, Oi(Rf) is an order in 
QG which can be obtained from ZG by adjunction of certain idempo-
tents arising from wild ramification. If F' is tamely ramified over Q, 
then indeed Oi(R') —ZG, and we recover Hilbert's result (ii). Jacob-
inski [125] investigated Oi(R') in more general circumstances, 

(v) Martinet [155a] recently proved that if F is a normal tamely 
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ramified extension of Q whose Galois group G is dihedral of order 2p 
(p an odd prime), then alg. int {F\~ZG, SO a normal integral basis 
exists in this case. 

Other references for this section: Newman-Taussky [173]. 

19. Krull-Schmidt and Cancellation Theorems. Let R be a 
Dedekind domain, A any F-algebra. We shall say that the Krull-
Schmidt Theorem is valid f or A-lattices if every A-lattice is expressible 
as a direct sum of indecomposable lattices which are uniquely deter­
mined up to A-isomorphism and order of occurrence. As pointed out 
in Theorems 5.2 and 5.8, we have 

(19.1). THEOREM. The Krull-Schmidt theorem holds f or A-lattices if 
(i) R is a complete discrete valuation ring, or 
(ii) R is a discrete valuation ring, and A is a direct sum of full matrix 

algebras over F, or 
(iii) R is a discrete valuation ring and A is a direct sum of full matrix 

algebras over skewfields which remain skewfields upon passing from F 
to its completion. 

When R = slg. int. {F}, the Krull-Schmidt Theorem holds for 
i£-lattices if and only if R is a principal ideal domain. Hence in order 
to insure that the Krull-Schmidt Theorem is valid for A-lattices, it is 
usually necessary to impose strong restrictions on R. Often one deals 
instead with the easier case of i^p-lattices. 

Let Zp denote the localization of Z at the prime ideal (p) of Z. 
Berman-Gudivok [27] observed that the Krull-Schmidt Theorem al­
ready fails for Zp G-lattices when G is a suitably chosen cyclic group 
of squarefree order. In this direction we state 

(19.2). THEOREM (JONES [137]). Let G be an abelian group of 
exponent k-pn where p is a prime, p\k. The Krull-Schmidt Theorem 
holds for Zp G-lattices if and only if one of the following holds true: 

( i ) * « l . 
(ii) rc = 0. 
(iii) The element p generates the multiplicative group of integers (mod 

k) which are relatively prime to k. 

Other references. Dress [58], Roggenkamp [20ó]. 
Now let A be a separable algebra over F, and let i(A) be the Higman 

ideal of A (see §4) (so i(A) = [G:l]R when A = RG). As in §6, define 

R= f)RPy 
p 

where P ranges over all maximal ideals of R containing i(A). Set 
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Â = RA, an iJ-order in A useful in the study of genera. As shown by 
Reiner [188], the Krull-Schmidt Theorem need not hold for À-lattices; 
indeed, the R-ranks of the indecomposable direct summands of a 
Â-lattice M need not be uniquely determined by M. This question 
as to when the Krull-Schmidt Theorem holds for Â-lattices is studied 
in detail in Jacobinski [129]. 

Generalizing Theorem 5.8, we have 

(19.3). THEOREM (JACOBINSKI [129]). Let F be an algebraic number 
field, and let A be an R-order in the semisimple F-algebra A. Suppose 
there exists a maximal ideal P of R such that 

(i) for every maximal ideal P' of R distinct from P, the order Ap> is 
a maximal Rp>-order in A, and 

(ii) every A%-module is of the form FP ® F X for some A-module X. 
Then the Krull-Schmidt Theorem is valid for A-lattices {and for 

Ap-lattices as well). 

(19.4). COROLLARY. Let G be a finite p-group, where p^l, p prime. 
Then the Krull-Schmidt Theorem holds for ZpG-lattices. 

We shall say that the Cancellation Theorem holds for A-lattices if 
for each triple of A-lattices M, N, X, the isomorphism M+X^N+X 
implies that M~N. Of course, if the Krull-Schmidt Theorem holds 
for A-lattices, then so does the Cancellation Theorem. When R = 
alg. int. {F}, the Cancellation Theorem need not be true for RG-
lattices; see for example Berman-Gudivok [27], as well as Theorem 
8.12 above. 

Indeed, an important example shows that the Cancellation 
Theorem is not necessarily true for the category of projective RG-
lattices. We quote 

(19.5). THEOREM (SWAN [233]). Let G be a generalized quaternion 
group of order 32. There exists a projective left ideal M in the group 
ring ZG, such that 

ZG + ZG^ÊM + ZG, M ^ ZG. 

In fact, if Y is a maximal Z-order in QG containing ZG, a corresponding 
result holds for Y-lattices. 

Given A-lattices M and N, we have called N a local summand of M 
if Np | MP for each maximal ideal P of R. 

(19.6). THEOREM (JACOBINSKI [129]). Let F be an algebraic number 
field, and let A be an R-order in the semisimple F-algebra A. Suppose 
that M and N are left A-lattices which satisfy the Eichler condition (see 
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§8), and let the k-lattice X be a local summand of Min)for some n. Then 
M+X^N+X implies that M^N. 

(19.7). COROLLARY (BASS [12, §9]). Let X be a projective A-lattice, 
and M any K-lattice having A(2) as local summand. Then for any A-
lattice N, M+X^N+X implies that M£*N. 

Finally we note 

(19.8). THEOREM (JACOBINSKI [129]). Let F be an algebraic number 
field y and let G be a finite group such that no prime divisor of [G:l] is 
a unit in R. Suppose that no simple component of the group algebra FG 
is a totally definite quaternion algebra.15 Then the Cancellation Theorem 
holds in the category of projective RG-lattices. 
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