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The purpose of this note is to indicate how certain asymptotic 
methods developed for ordinary differential equations can be ex­
tended and applied to initial-boundary value problems for nonlinear 
parabolic and hyperbolic equations. This is done by considering the 
initial-boundary value problem as a Cauchy problem for an ordinary 
differential equation in an abstract space. 

We consider the initial value problem 

(1) e(dv/dt) - A(t, e)v = ƒ(*, v, e), 0 ^ t S T, v(0) = S(€) 

where v is an element of a Banach space E and c > 0 is a small param­
eter. The (possibly unbounded) linear operators A are assumed to 
have a common domain of definition £> independent of (£, e), and the 
function ƒ is assumed to have continuous derivatives with respect to 
tf e and continuous Fréchet derivatives with respect to v. Finally, 
$(€)££> has continuous derivatives with respect to e. 

We will outline here a method for finding an expansion for the 
solution of (1) which is valid as e—>0. 

1. Formal method. We begin by formally describing the procedure. 
These steps will be justified by Theorems 1-3. Suppose 

(I) the operator A(t, e) has a bounded inverse for each (t, e) and 
A(t, e ) ^ " 1 ^ , 0) has continuous derivatives with respect to (t, e). 

Assuming for the moment that (1) has a solution for e>0 , we 
differentiate (1) successively with respect to € and set € = 0 in the 
results. This gives the system of equations 

(2a) - A(t,0)vo=f(t,v0,0) 

(2b) - [A(t, 0) +fr(t, Vo(t), 0)]vr = Rr(t), f = 1, 2, • • • , 

for the coefficients vr of the Taylor expansion of v about € = 0. Next, 
we make the change of variables t = er in (1): 

(3) dV/dr - A(er, e)V = ƒ(«-, V, e), 7(0) = S(€). 

By differentiating this successively with respect to e and setting e = 0 
in the results, we get 

1 This Research was supported by the National Science Foundation under con­
tract No. NSF GP11458. 
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(4a) dVo/dr - A{0, 0)V0 = /(O, V0, 0), F„(0) = »(0) 

dVr/dr - [A(0, 0) +M0, Vo, 0)]Vr = pr(r), Fr(0) = °vr, 
(4b) 

r = 1,2, • . . . 

for the coefficients Vr of the Taylor expansion of the solution of (3) 
about € = 0. In (4b) vr is the coefficient of er in the Taylor expansion 
about € = 0 of S(e). We observe that for each r, Rr in (2b) depends 
only on t, v0, • • • , zv-i, and pr in (4b) depends only on r, Fo, • • • , 
Fr_x. 

If problems (2), (4) can be solved successively for the vry Vr, we 
can form the (possibly divergent) expansions 

(5a) £ vr(t)e, (5b) È Vr(t/t)e. 

From analogy with the ordinary differential equations case (A(t, e) 
bounded operators) the solution of (1) is expected to be represented 
by (5a) for t away from zero and by (5b) for t near zero. To obtain 
an expansion for the solution of (1) valid uniformly for O^t^T, we 
employ a matching device. We observe that the expansion 

oo 

(6) X) vr(er)er 

formally satisfies the problem (3). Expanding each vr(t) = X}<T=o Vr,qtq 

in its formal Taylor expansion and substituting these into (6) gives 

(7) Ê Ur(r)e*, Ur(r) = £ vr-q,qr\ r = 1, 2, • • • . 

I t is shown below that expansion (7) is like expansion (5a) for t near 
zero and like (5b) for t away from zero. We thus arrive at the expansion 

(8) S M/) + Vr(t/e) - Ur(t/e)]*. 

Expansion (8) is considered in three different cases: 
(i) Abstract Parabolic Case where for each (t, e ) £ [0, T] X [0, e0], 

—A(t, e) is the infinitesimal generator of an analytic semigroup of 
operators in E (see Kato [ l ] ) . 

(ii) Abstract Hyperbolic Case where for each (t, e), — A(t, e) is the 
infinitesimal generator of a semigroup of class Co [2]. 

(iii) Parabolic Case where A is a positive definite elliptic operator 
in E = L°°. 
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2. Assumptions. We assume: 
(II) The problem (2a) has an isolated solution which is infinitely 

differentiate for O^t^T and ƒ*(*, v0(t), 0) = 0 for O^t^T (i.e., A 
accounts for the linearization of (1) about v = v0(t)). 

(III) The problem (4a) has a unique solution V= F0(r) which 
exists for 0 ^T < oo. 

Finally, a crucial condition for our work is: 
(IV) The resolvent set of —A(ty e) includes the half plane 

{ R e Z è - 8 } for some 5>0 . 

3. Results. The proofs of the following theorems will be given 
elsewhere. 

THEOREM 1 (ABSTRACT PARABOLIC C A S E ) . Let conditions (I)-(IV) 
and (i) be satisfied. Then f or sufficiently small \v(0) — flo(0)|#, there 
exists a unique solution v~v(t, e) of {I) for each small e. Alsot the prob­
lems (2) and (4) can be solved successively and 

*fc «)£ E M ' ) + Vr(t/t) - Ur(tfc)]* 
r-0 

where vri Vr, Ur are determined from (2), (4) and (7), respectively. 

REMARKS. The notation g(/, €)#X}r°L0 <**•(*, c)er here means that for 
each JV = l f 2, • • • , the function SN defined by eN+1SN = g(t, e) 
— ]CrU#r(2» *)& 1S bounded in the norm of E uniformly for 0 ^ / ^ T, 
0 < € ^ € 0 . 

The restriction on | S(0) —tr0(0) | jy in Theorem 1 is primarily to 
ensure that | F0(r)— v0(0)\E—*0 as r—»<». Thus, its size depends on 
the nonlinearity ƒ and the location of the spectrum of —A(tt e). 

THEOREM 2. (ABSTRACT HYPERBOLIC CASE) . Let conditions (I)-(IV) 
and (ii) be satisfied. Also, suppose \A(t, e)—A(s, e)\B=>C\t —s\ for 
some constant O O {independent of e) and all 0^£, s ST. Then the 
conclusion of Theorem 1 remains valid. 

REMARKS. An important restriction imposed by the continuity 
condition on A in Theorem 2 is that the operator defined by the 
difference is a bounded operator. This condition does not appear in 
the parabolic case because of certain properties of analytic semi­
groups. 

The proof of Theorems 1 and 2 rests on obtaining an estimate for 
the fundamental solution of problem (1). In particular, we have 

LEMMA. Let either the hypotheses of Theorem 1 or 2 be satisfied. Then 
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for each €>0 , there is a fundamental solution, U(t, s, e),for the linear 
part of problem (1) (i.e. (1) with f = 0). Moreover there are positive 
constants K, t\ such that 

| U(t, s, e) \E ^ K exp[-ri(t - s)/e] forOSs ^ t ^ T, 0 < e é e0. 

The proof of the following theorem rests on obtaining a similar 
estimate for the fundamental solution when £ = L°°. Let Q be a 
bounded domain in Euclidean w-space En with boundary ÔQ and 
closure S. A point # £ E n is given by x = (xi, • • • , xn), and we use 
the notation Di—d/dxi. We shall denote by 31 (x, t, e, D) a second 
order linear differential operator in L00 with real coefficients: 

n n 

%(x, t, e, Z>) = £ Oi,(x, t, e)DiDj + £ <*<(*, t, *)I>i + a(%, t, e). 

The coefficients of SI have continuous derivatives of all orders with 
respect to (x, t, e ) G S X [0, T] X [0, e0]. Also, the matrix (at7) is sym­
metric and positive definite uniformly in (x, t, e) (in particular at 
€ = 0). Finally, Q is of class CK 

Consider the initial-boundary value problem 

eut -%u= fix, t, u, e), u = 0 on dQ X [0, T]9 
(9) 

u(x, 0, e) = u(Xy e) on ti. 

Here ut denotes (du/di), and we assume/ , ü have continuous deriva­
tives of all orders. The formal considerations above proceed in the 
same way for this problem. We will denote by (2*), (4*), etc., those 
statements reinterpreted for (9). We then have 

THEOREM 3 (PARABOLIC C A S E ) . Let 2Ï, ƒ, û be as above and let 
condition (II*) — (IV*) be satisfied. Then for \û(x, 0) — Vo(x, 0)\L* 
sufficiently small, there is a unique solution of (9) for each small e. More­
over, (2*), (4*) can be solved successively and 

CO 

«(*, t, « ) , - E [**(*» 0 + Vr*(x, //«) - U*(X, / /«)]• . 

REMARKS. In (9), 31 can be replaced by an elliptic operator of order 
2m for any integer m > 0 with a corresponding change in the boundary 
conditions (see e.g., Agmon [3]). The estimate in L00 for the funda­
mental solution of problem (9) is obtained from the maximum prin­
ciple for parabolic equations. 

In [4] Keller formally obtained an expansion for the solution of (9) 
in the linear case (i.e., ƒ independent of v). His expansions involved 
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the eigenfunctions of 21. Since the Green's function for the linear part 
of (9) can be expanded in terms of the eigenf unctions of 8t, the expan­
sion of Theorem 3 can be given in terms of these eigenf unctions. In 
the linear case the result agrees with that in [4]. 

The method outlined here is essentially the one developed by 
Vasil'eva [5] for ordinary differential equations. Her work suggests 
that these methods can be extended to treat systems of the form 
ut = g(t, u, v, e), eût = A (t> e)v+f(t, u, v, e). Such extensions are presently 
being investigated. Finally, this work has been applied to problems 
involving the heat equation with nonlinear source in a domain with a 
slowly moving boundary. 
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