MORSE THEORY ON BANACH MANIFOLDS

BY K. UHLENBECK

Communicated by Richard Palais, June 23, 1969

S. Smale has conjectured, in an unpublished paper, that the Morse Theory on Hilbert mainfolds due to Palais and Smale [1], [4] can be extended to Banach manifolds. Under a different definition of nondegeneracy of critical points we have been able to make this extension. The result also extends Morse theory on Hilbert manifolds to a wider class of functions. I wish to thank R. Palais for several helpful suggestions.

Let f be a real-valued C^1 function on a C^1 Banach manifold X. A critical point x of f is said to be weakly nondegenerate if there exists a neighborhood U of x and a hyperbolic linear isomorphism L_x : $T_x(X) \rightarrow T_x(X)$ such that in the coordinate system of U, $df_{x+v}(L_xv) > 0$ for all x+v in U, $v \neq 0$. Then $T_x(X)$ splits into the direct sum of two invariant subspaces of L_x , $T_x(X) \cong T_x(X)_+ \oplus T_x(X)_-$ such that the spectrum of L_x on $T_x(X)_+$ lies in the right half plane and the spectrum of L_x on $T_x(X)_-$ lies in the left half plane. The index of f at x is defined to be dim $T_x(X)_-$, and this term is well defined. A nondegenerate critical point of a function on a Hilbert manifold is weakly nondegenerate.

Theorem 1. Let f be a C^2 function on a C^2 paracompact manifold X without boundary modeled on a separable Banach space B. We assume that B has C^2 partitions of unity and a metric which is C^2 away from 0. If, in addition,

- (a) f satisfies condition (C) of Palais and Smale with respect to a complete Finsler metric on X, and
- (b) q > q' are not critical values, and all the critical points in $f^{-1}((q, q'))$ are weakly nondegenerate of finite index, then there exists a homeomorphism $\theta: f^{-1}[q, -\infty) \cong f^{-1}[q', -\infty) \cup h_i$ where a handle h_i of index q_i is added for each one of the finite number of critical points $x_i \in f^{-1}((q, q'))$ of index q_i .

REMARK. In the case of an infinite index, a similar result holds, provided that

$$df_{x+v}(L_x v) > \alpha(||v||_B)$$
 for $0 \neq v \in T_x(M)_- \cap U$

where α is a continuous function from $R^+ \rightarrow R^+$.

THEOREM 2. Let η be a vector bundle over a finite dimensional manifold N. Let the integral $J: L_k^p(\eta)_0 \to R$ be given by

$$J(s) = \int_{N} (1 + |A(s)|^{2})^{p/2} + B(s)du \qquad (p \ge 2)$$

where A is a nonlinear (over-determined) elliptic system of order and weight k, $pk > \dim N$, and B is of order k-1 and weight $pk.^1$ Then J is $C^{[p]}$ (C^{∞} for p even) on the Sobolev space $L_k^p(\eta)_0$, and if the critical point v has the properties:

- (a) $v \in C^{k+\alpha}(\eta)$ for any $\alpha > 0$,
- (b) the bilinear form $d^2J_v(,)$ extends to a nondegenerate form on $H_k(\eta)_0$,

then v is a weakly nondegenerate critical point of J with finite index.

REFERENCES

- 1. R. S. Palais, Morse theory on Hilbert manifolds, Topology 2 (1963), 299-340. MR 28 #1633.
- 2. ——, Ljusternik-Schnirelmann theory on Banach manifolds, Topology, 5 (1966), 115-132.
 - 3. ——, Foundations of non-linear analysis, Benjamin, New York, 1968.
- 4. S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. of Math. (2) 80 (1964), 382-396. MR 29 #2820.
 - 5. ——, Morse theory on Finsler manifolds (unpublished article).

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139

¹ See Chapter 16 of [3].