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Let X be a closed plane curve given by a four times continuously 
differentiate map X: C—>R2 from the circle C into Euclidean two-
dimensional space R2. The results announced here are typified by 

THEOREM 1. Under certain regularity conditions, the number of 
straight lines which are tangent to X at two points s and t of X and such 
that the unit normals to X at s and t are equal is equal to the number of 
straight lines which are tangent to X at two points s and t of X and such 
that the unit normals to X at s and t are unequal, plus the number of self-
intersections of X, plus one-half the number of inflection points of X, 
In Figure 1 the double tangents of the first mentioned kind are drawn 
solid and the others are dashed. 

FIGURE 1 

1 This research was supported in part by the National Science Foundation, Grant 
No. GP8397. 
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The formulas presented here may be thought of as analogs to the 
classical Pliicker formulas for complex algebraic curves. 

DEFINITIONS AND NOTATIONS. I t is assumed that the tangent to 
X, X'(s) never vanishes. For each s £ C let /c(s), p(s), c(s), n(s), N8 

and T» be the curvature, radius of curvature, center of curvature, 
unit normal, normal line, and tangent line at s. When K(S) = 0 the unit 
normal n(s) is not defined and we set p(s) = <*> and c(s)~ oo = t h e 
point at infinity. 

We say that an unordered pair {s, t} QC is a tangent pair provided 
X(s) 9^X{t) and JT, = TV A tangent pair {s, t} is regular if K(S) T^O and 
tc(t) 7=̂ 0. The sets of regular tangent pairs is divided into two subsets. 
Given a regular tangent pair {s, t} we let {s, t} Qlt iff n(s) = —n(t), 
and {s, t}&lt iff n(s)=*n(t). 

Given two vectors v, wQR2 let [vy w] stand for the determinant 
of the 2X2 matrix with column vectors v and w in that order. 

A crossing is an unordered pair {s, t} QC such that s^t and X(s) 
= X(t). A crossing {s, t] is regular if Ts^Tt. Let G be the set of 
crossings. 

A point sQC is an inflection point provided /c(s)=0. An inflection 
point 5 is regular if K'(S) ?^0. Let F be the set of inflection points. 

For any set A denote the cardinality of A by *A. 
RESULT. 

THEOREM 1. If all the tangent pairs, crossings and inflection points 
of X are regular, then *lh

 #II*, # 6 and $F are finite and 

tilt = #1* + #e + h*F. 

Considering only X which satisfy the hypothesis of Theorem 1, it 
is clear that #11 tl

 #I«, #(B and | # F must be nonnegative integers and 
#II* = # I * + # 6 + ^ # F . Are these the only restrictions on the possible 
values for (#11*, #I*, #C, %F) and, if not, what is the totality of all 
possible values for (#II«, #I*, #<3, %*F) with X satisfying the hypoth­
esis of Theorem 1? The answer to the first part of the question is no, 
but a complete answer to the second part is not known. However, we 
do have the following information. General examples show that all 
triplets (a, 6, c) with a, b and c —1 nonnegative integers are possible 
values for (*lh #<B, §*F). The case with no inflection points is more 
interesting. I t can be shown that if #F=0 then #I« is even and #1* 
g 4 ( # e ) 2 + 2 ( # e ) . A general example shows that all triplets of the 
form (a, b, 0) with a and b nonnegative integers satisfying aSb2 — b, 
and a even, are possible values for (#1*, #6, | # F ) . This and other 
examples support the conjecture that if # .F=0 then #I*^(#(B)2 — #G. 
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If this conjecture were established then in light of the above facts, 
the set of all possible (#II«, #I«, #C, | # / 0 would be completely deter­
mined. 

OUTLINE OF PROOF. Parameterize the curve X by arclength and 
thus represent it as a four times continuously differentiable function 
X: R—>R2 of period L = the total arclength of X. Consider the vector 
field w(s, t) = (u(s, /), v(s, t)) where 

u(s,t) = [X(s)9 X(s) - X(t)] 

and 

v(s, t) = [X(t), X(t) - X(s)] 

(• = differentiation with respect to arclength). The critical points 
(zeros) of w in the set Q = {(s, t)\0StS2L and t<s<t+L} clearly 
correspond to tangent pairs and crossings. Furthermore, the index 
of a critical point (s, / )£ (? is + 1 if {s> *} G I ^ C , and is —1 if {s, t} 
£11*. The regularity conditions lead to the conclusion that the num­
ber of critical points in Q is finite. Hence, we can find a to, O^toSL, 
and €>0 such that A—B contains no critical points where A 
= {(s, t)\to£t£t0+L and t<s<t+L} and B={(s, t)\t0<t<t0+L 
and t+e<s<t+L — e}. The winding number of w along the boundary 
of B transversed counterclockwise is found to be — #F. Theorem 1 
then follows by setting the sum of the indices of the critical points 
in B equal to this winding number. 

FURTHER DEFINITIONS. We say that an unordered pair {$, t}<ZC 
is a normal pair provided X(s)?&X(t) and N3 = Nt. An ordered pair 
(s, O G C X C is a tn-pair if X(s)^X(t) and Ts = Nt. A normal pair 
{s, t} is regular if c(s)7£c(t). A tn-pair (s, t) is regular if K ^ T ^ O and 
c{t)7^X{s). The sets of regular normal pairs and regular /w-pairs are 
each divided into two subsets. The distinction between the two classes 
of regular normal pairs depends upon the positions of the two centers 
of curvature relative to each other and to the two points on the curve. 
Let {s, t) be a regular normal pair and set l = X(t)—X(s) and ||/|| 
= the norm of L Let {s, t} £ I n iff either 

(1) n(s)=-n(t)=l/ 
(2) n(s)=n(t)=l/\\l\ 
(3) n(s)=n(t) = -l/\ 
(4) n(5) = - » ( 0 = - / / | |Z | 
(5) jc(s) = 0 a n d n ( 0 = // | 

14 Ml or 
or 

l\\ or 

and p(s)+p(t)<\ 
and p(s)>p(t) +\\l\\ 
" and p(t)>p(s)+\' 

or 
|/|| or 

(6) K(t) = 0 and n(s) = -l/\\l\\. 
Let II» be the complementary subset to I„ of regular normal pairs. 

Let (s, t) be a regular fw-pair. Set <r = 1 if 
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n(t) = (X(s)-X(t))/\\X(s)-X(t)\\ and p ( * ) < | | X ( * ) - . ï ( 0 | | ; 

set o-=—1 in all other cases. Now, let (s, / )£ I« n iff <r[n(s), 
(X(s)-X(f))]>09and (s, *)GH«» iff <r[n(s), (X(s)-X(t))]<0. 

A crossing {s, t} is biregular if T89^Tt and N89^Tt* Let the scalar 
product of two vectors v, wÇzR2 be denoted by (v, w). We assign 
an index to each biregular crossing (s, i) as follows. If 

[X(s),X(t)](X(s),X(t))>0 

then set index (s, /) = 1, and if [X(s), X(t)](X(s), X(t))<0 then set 
index (s, / ) = — 1. 

We will want to consider another plane curve also given by a four 
times continuously differentiable function F: C—»JR2, F / ( ^ ) ^ 0 all 
s £ C ' , where C' is another copy of the circle. The concepts of tangent 
pair, normal pair, tn-pa.iv, and crossing and their regularity and dis­
tinguished subclasses carry over easily to ordered pairs (s, O G C X C ' . 
We obtain in this way classes 1/ , 11 / , I„', II» , Vm, IVm, and 6'. 

Similarly we may replace C by any compact C4, one-dimensional 
closed manifold and consider X to be a C4 immersion. When we inter­
pret C in this new way the sets defined above will be called I", 
H / ' , I n " , e t c . 

FURTHER RESULTS. 

THEOREM 2. If all the normal pairs and crossings of X are regular, 
then #In, #IIW and #C are finite and 

mn = #in + *e. 

THEOREM 3. If all the tn-pairs of X are regular and all the crossings 
biregular then #I*n,

 #II*n and #(B are finite and 

#11 tn — #!*»• 

THEOREM 4. If all the tangent pairs and crossings between X and Y 
are regular, then #1/ , #11/, and #6' are finite and 

#11/ = #1/ + #e'. 

THEOREM 5. If all the normal pairs and crossings between X and Y 
are regular, then #I„', #II„', and #6' are finite and 

#nn' = #in' + #e'. 

THEOREM 6. If all the tn-pairs between X and Y are regular and all 
the crossings between X and Y are biregular, then #If'n, #II[n and #<3' are 
finite and 
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#II«„ = tl'tn + X index p. 
pee' 

THEOREM 7. Theorems 1, 2, and 3 hold with X interpreted as an 
immersion of a compact, C4, not necessarily connected, closed one-
dimensional manifold. That is, under appropriate regularity conditions 

#11/' = «/ + #e" + J#F", 

#n"= #i"+ #e", 

' I I tn = 'I*n> 

cmd the above quantities are finite. 

PROOFS OF THEOREMS 2-7. The proofs of Theorems 2 through 6 
are similar to the proof of Theorem 1 and make use of the vector 
fields Wi~(ui, vi) in the ta-pairs cases, and W2 = (u2, v2) in the normal 
pairs cases, where 

m(s, t) = [x(s), x(s) - x(t)], 
v1(s, t) = (X(0, X(t) - X(s)), 

u2(s, t) = (X(s), X(s) - X(t))y 

v2(s, t) = (X(t), X{t) - X{s)). 

Theorem 7 is just a corollary to Theorems 1 through 6. 
REMARK. Note that w2(s, t)=% grad\\X(s)-X(t)\\2. This leads to 

an alternate proof of Theorems 2 and 5 using Morse theory. Extreme 
points for | |X(s)~X(/ ) | | 2 correspond to points in In and from this it 
follows that ' I » ^ l . 

EXTENSIONS. The regularity and smoothness hypotheses above 
can be considerably weakened, and cusps and lines going off to in­
finity can be included in the theory. Similar results hold for curves 
on the sphere S2 and in R3. Also, the above techniques yield formulas 
involving special w-tuplets of points on X. 
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