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We describe in this note how the "boundary representation" tech­
nique introduced in [l ] leads to a complete classification of compact 
operators on Hubert spaces to unitary equivalence (Theorem 3), in 
terms of a sequence of invariants related to (and generalizing) the 
numerical range. These invariants are, we feel, vastly simpler than 
one might have anticipated in so general a situation. Full details will 
appear in a forthcoming sequel to [ l] . 

1. Boundary representations for spaces of compact operators. Let 
LC(&) (resp. £(§)) denote the C*-algebra of all compact (resp. 
bounded) operators on a Hubert space § , which may be finite-
dimensional. The following theorem implies, in the terminology of 
[ l ] , that the identity representation of LC($&) is a boundary repre­
sentation for every irreducible linear subspace of LC(S&) (we call a 
set of operators irreducible if it commutes with no nontrivial self-
adjoint projections). 

THEOREM 1. Let S be an irreducible subset of LC(&), and let <t> be a 
completely positive linear map of LC(f£>) into L(§) such that ||#|| ^ 1 
and <t>(T) = Tfor every T in S. Then # is the identity map. 

This result is surprising inasmuch as S can be a very small subset 
of LC(§) a priori. For example, S may consist of a single irreducible 
compact operator. We shall not give the proof of Theorem 1 here, 
except to say that it is an application of the following. 

LEMMA. Let S and # satisfy the hypothesis of Theorem 1. Then there 
is a faithful, completely positive, idempotent linear map yf/: L(§)—»L(§) 
such that H l̂l S1, and whose compact fixed points coincide with the fixed 
points of <f>. 

2. The matrix range of an operator. Let T be a Hubert space 
operator, and let C*(T) denote the C*-algebra generated by T and 
the identity. It is well known that, as cj> runs over the state space of 
C*(T), the complex numbers <t>(T) fill out the closure of the numerical 
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range of T. The following definition generalizes this notion; Mn will 
denote the C*-algebra of all complex nXn matrices, n = l, 2, • • • . 

DEFINITION. Let T£:L(!Q), and let nbe a positive integer. V?n(T) is 
defined as all nXn matrices of the form (j>(T)y where <j> ranges over all 
completely positive linear maps of C*(T) into Mn which preserve the 
identity. 

We remark tha t it is easy to give an explicit description of V?n(T) 
in terms of vectors in the underlying space, so that V?n(T) appears 
as a direct generalization of the ordinary numerical range. 

I t is significant that Wn(T) can be calculated for quite a variety of 
operators. For example, if T is a normal operator, then it can be 
shown that V?n(T) is the closure of all finite sums ]C2*,J^t» where 
2«Gsp(jT) (the spectrum of T) and the Ki are positive matrices with 
sum / ; i.e., V?n(T) is the closed "matrix-valued" convex hull of sp(jf). 
Still more specifically, if the spectrum of (a unitary operator) T is the 
entire unit circle, then cWw(2n) is the closed unit ball in Mni n = l, 
2, • • • . As a second example, let T be an operator on a two-dimen­
sional Hilbert space having a matrix representation 

(° \ 
\o o/ 

Here, °Wn(T) turns out to be all nXn matrices whose (ordinary) 
numerical radius is at most | . 

We will say an operator S £ L ( § ) is a projection of an operator 
TE;L($t), if there is a subspace 3D? of $ such that 5 is unitarily equiv-
lent to PmT\m- Note that we do not require 9ÏÎ to be invariant (or 
even semiin variant) under 7\ so that projections of T in general bear 
little resemblance to T. The following result gives a number of de­
scriptions of the partial ordering of operators defined by the relation: 
W ^ C - W ^ r ) , for every n ^ l . 

THEOREM 2. Let S and T be Hilbert space operators (acting, perhaps, 
on different spaces). Then the following are equivalent. 

(i) V7n(S)QV7n(T)9 » â l . 
(ii) | | i l ® I + j B ® 5 | | ^ | | i 4 ® / + B ® r | | , / o r every pair A, B of nXn 

matrices, and every n^l. 
(iii) Every finite-dimensional projection of S is a projection of w(T), 

for some ^-representation w of C*(T) (which may depend on the particu­
lar projection of S). 

(iv) S is a projection of ir(T),for some ^-representation w of C*(T). 
(v) (For normal S and T) sp(5) is contained in the convex hull of 

sP(D. 
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(vi) (For T compact and irreducible) S is a projection of some 
multiple I®T of T. 

3. Compact operators. The structure of C*-subalgebras of LC(S£) 
is well known, and leads to the conclusion that every compact oper­
ator is an (orthogonal) direct sum of irreducible compact operators. 
The same line of reasoning shows that the problem of classifying 
general pairs of compact operators (to unitary equivalence) reduces 
quickly to the case where both operators are irreducible. We now 
come to the main result. 

THEOREM 3. Let S and T be irreducible compact operators on respec­
tive Hubert spaces § and $ . If c^n(S)=Wn(T) for every n^ 1, then S 
and T are unitarily equivalent. 

If § and $t are of dimension at most n< oo, and if ^ « ( S ) =eW»(r), 
then S and T are unitarily equivalent. 

The proof is a straightforward application of Theorem 1, Theorem 
2(i) and (ii), and a general result (Theorem 2.1.2) from [l ]. Note that 
the converse of both assertions is trivially true, and in particular 
{°Wi(T), eW2(3

n), • • • } gives a complete set of unitary invariants 
for an irreducible compact operator T. 

4. Some other applications. We conclude with two different appli­
cations of Theorem 1 and the results of [ l ] . Let T be an operator on 
a Hubert space § , and let 2JÎ be a semiinvariant subspace for T. In 
dilation theory, one wants to know (intrinsic) conditions on the pro­
jection PmT\wi which force UDÎ to reduce T (i.e., T^SflQW and r*3W 
C5DÎ). The following result gives such an answer, for arbitrary sub-
spaces, when T is a multiple I®TQ of an irreducible compact oper­
ator To. 

THEOREM 4. Suppose J P £ L ( § ) is a multiple of an irreducible com­
pact operator, and let Wlbea subspace of § . Suppose Pa» J*] wi is compact 
irreducible, and V?n(PmT\m) =-V?n(T), for every n^l. Then 9Ji 
reduces T. 

Our second application has to do with factorization. Consider the 
following question: given an algebra of operators OfcCL(§), which 
positive operators on § can be factored in the form T*T with T in a? 
Without going into the origins of this question (c.f. references [2] 
and [3]), we will describe a broad class of operator algebras which 
are a t the worst extreme, in the sense that the sum of any (finite of 
infinite) sequence of factorable operators is almost never factorable. 
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THEOREM 5. Let d be a subalgebra of L(&) such that some irreducible 
set of compact operators commutes with Ot. Let T, T\, T^ • • • belong to 
Ot, with T invertible, and suppose ^Tn*Tn=T*T. Then each Tn is a 
scalar multiple of T. 
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