ON A CONJECTURE OF G. D. MOSTOW AND THE STRUCTURE OF SOLVMANIFOLDS

BY L. AUSLANDER AND R. TOLIMIERI

Communicated by Nathan Jacobson, June 10, 1969

Introduction. Let G be a connected solvable Lie group and let Γ be a closed subgroup of G. Then the quotient manifold G/Γ is called a solvmanifold. G. D. Mostow in a fundamental paper [6] proved

Theorem 1. Let G/C be a compact solvmanifold, let N be the nil-radical of G, and let Γ contain no nontrivial, connected subgroup normal in G. Then

- (a) N contains the identity component of Γ ,
- (b) $N/N\cap\Gamma$ is compact,
- (c) $N\Gamma$, the group generated by N and Γ in G, is closed, in G.

Mostow has also conjectured the following:

Mostow Conjecture. A solvmanifold is a vector bundle over a compact solvmanifold.

In this paper we will announce results that yield a new proof of Theorem 1 and a proof of the Mostow Conjecture, as well as many of the known results on the structure of solvmanifolds as given in [1], [3] and [4] for instance. An outline of the proof of the Mostow Conjecture and the proof of Theorem 1 are given in §3.

1. Definitions and resume of known facts. Let N be a connected, simply connected nilpotent Lie group. A closed subgroup of N will be called a CN group. According to Malcev a CN group Δ can be characterized as a torsion free nilpotent group such that if Δ_0 is the identity component of Δ then Δ/Δ_0 is finitely generated. Further, if Δ is a CN group there exists a unique connected nilpotent Lie group Δ_R such that $\Delta_R \supset \Delta$ and Δ_R/Δ is compact. If Δ is a CN group with Δ_0 trivial we will call Δ an FN group.

In [3] and [6] it was shown that a group Γ is the fundamental group of a compact solvmanifold if and only if Γ satisfies an exact sequence

$$1 \to \Delta \to \Gamma \to Z^{\bullet} \to 1$$

where Δ is an FN group and Z^{\bullet} denotes s copies of the integers. Fundamental groups of compact solvmanifolds will be called FS groups. If Δ in (1) is a CN group we will call Γ a CS group. If Γ is a CS group satisfying the exact sequence (1) there is a unique group Γ_R satisfying the exact diagram:

(2)
$$1 \to \Delta \to \Gamma \to Z^{\bullet} \to 1$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$1 \to \Delta_R \to \Gamma_R \to Z^{\bullet} \to 1$$

As it is convenient, we will often identify a connected simple connected nilpotent Lie group with its Lie algebra by the exponential mapping.

Now let G be a connected simply connected solvable Lie group. In [5] the semisimple splitting S of G was characterized as follows:

$$S = T \cdot M = T \cdot G$$

where M is the simply connected nil-radical of S and T is an abelian group of semisimple automorphisms of M, where S is generated by T and G.

In [7], Wang showed that if Δ is an FN group, then

$$1 \longrightarrow \Delta_R \longrightarrow \Gamma_R \longrightarrow Z^s \longrightarrow 1$$

has a semisimple splitting in the following sense: there exists an abelian group of automorphism of Γ_R such that:

- (1) $T \cdot \Gamma_R = T \cdot \Delta^*$ where Δ^* is a CN group and $\Delta^* \supset \Delta_R$.
- (2) T acts as a semisimple group of automorphisms of Δ_R^* such that $T(\Delta_R) = \Delta_R$ and T induces the trivial action on Δ_R^*/Δ_R .

2. Main theorems.

THEOREM 2. Let Γ be a CS group satisfying the exact sequence (1) and let Γ_R satisfy diagram (2). There exists a closed subgroup Δ^* of Δ_R such that

- (a) $\Delta^* \supset \Delta$ and Δ^* / Δ is finite,
- (b) Δ^* is normalized by Γ .

Further, if we let $\Gamma^* = \Gamma \Delta^*$, there exists a semisimple splitting $T \cdot \Gamma_R$ of Γ_R such that

(c) Γ^* and Δ^* are invariant under T.

DEFINITION. A group $T \cdot \Gamma^*$ satisfying the conclusion of Theorem 2 is called a semisimple splitting of Γ .

THEOREM 3. Let Γ be a $C \cdot S$ group and let Γ_1^* and Γ_2^* be two semisimple splittings of Γ . Then Γ_1^* and Γ_2^* are commensurable. Further, any automorphism of Γ has a unique extension to any semisimple splitting of Γ .

LEMMA 4. Let G be a connected, simple connected solvable Lie group and let Γ be a closed subgroup of G. Then Γ is a $C \cdot S$ group.

THEOREM 5 (NIL-SHADOW). Let G be a connected, simple connected solvable Lie group and let Γ be a closed subgroup of G. Let S be the semisimple splitting of S and let $\Gamma_S = T_{\Gamma} \cdot \Gamma^*$ be a semisimple splitting of Γ . There exists an isomorphism $\eta \colon \Gamma_S \to S$ such that $\eta(\Gamma_S)$ is a closed subgroup of S with $\eta(\Gamma) = \Gamma$. Further, there exists a semidirect product presentation of $S = T \cdot M$ such that $\eta(T_{\Gamma}) \subset T$ and if $\Gamma_S = T_{\Gamma} \cdot \Delta^*$ then $\Delta^* \subset M$ as a closed subgroup, where Δ^* is a CN group.

3. Applications. In order to show the power of the nil-shadow theorem, we will assume it and prove Theorem 1 and outline a proof of the Mostow Conjecture.

DEFINITION. Let N be a connected, simply connected nilpotent Lie group and let B be a group of automorphisms of N. We define an action of $B \cdot N$ on N, called the affine action, as follows:

Let $(b, n) \in B \cdot N$ and let $m \in N$. We define

$$(b, n)(m) = b^{-1}(m)n$$

and if $\xi \in B \cdot N$ we denote $a(\xi)$ as the affine action of ξ on N. We begin by stating, without proof, the following lemma.

LEMMA 6. Let G be a connected, simply connected solvable Lie group and let Γ be a closed subgroup of G. Let $S = T \cdot M$ be the semisimple splitting of G. Then if we consider $\Gamma \subset S$ acting on M by the affine action then $M/a(\Gamma)$ is diffeomorphic to S/Γ .

Outline of Mostow's Conjecture. Let $\Gamma_S = T_\Gamma \cdot \Delta^*$ be a semi-simple splitting of Γ with Δ^* in M and $T_\Gamma \subset T$. Then Δ_R^* is a subgroup of M which is invariant under Γ and $\Delta_R^*/a(\Gamma)$ is a compact solvmanifold. Let V be a vector space such that $M = V \oplus \Delta_R^*$ and such that $T_\Gamma(V) = V$. The existence of V follows from the fact that T_Γ leaves Δ_R^* invariant and that T_Γ acts semisimply on M. Hence every element of M may be written uniquely as $v \cdot \delta$, where $\delta \in \Delta_R^*$, $v \in V$. Further if $\gamma = (t, n), n \in \Delta_R^*, t \in T_\Gamma$ we have

$$(t, n)v \cdot \delta = t(v) \cdot t(\delta)n = v'\delta'$$

where $v' \in V$ and $\delta' \in \Delta_R^*$. Thus we see that the images of the sets $V \cdot \delta$, $\delta \in \Delta_R^*$ gives a fiber bundle structure to $M/a(\Gamma)$ with $\Delta_R^*/a(\Gamma)$ as compact base space. It is easy to see that the action is linear and so that this is a vector bundle over the compact solvmanifold $\Delta_R^*/a(\Gamma)$.

Let us now prove Theorem 1. Assume now that all notation is as above and that in addition to this, G/Γ is compact. Then by the proof of the Mostow Conjecture we have that $\Delta_R^* = M$ or Δ^* is a closed cocompact subgroup of M. Thus, if Δ_0^* denotes the identity component of Δ^* , Δ_0^* is normal in M and invariant under T_{Γ} .

The following lemma is straightforward and its proof will be omitted.

LEMMA 7. Let all notation be as above. $\Gamma N/N$ is a discrete subgroup of G/N if and only if T_{Γ} is a discrete subgroup of T.

LEMMA 8. Let all notation be as above. If $a(M/\Delta_0^{\sharp})$ denotes the automorphism group of M/Δ_0^{\sharp} then the natural homomorphism $\delta \colon T_{\Gamma} \to a(M/\Delta_0^{\sharp})$ has trivial kernel.

PROOF. Let $t \in T_{\Gamma}$ be in the kernel of δ . Then the range X of (t-I), where I is the identity transformation, is in Δ_0^{\sharp} . Since T is abelian, X is an invariant subspace of M under T. Hence the ideal, g(X), generated by X in M is in Δ_0^{\sharp} and invariant under T. Thus g(X) is an ideal in δ and so in G. This contradicts our hypothesis unless X=0 and the kernel of δ is trivial.

PROOF OF THEOREM 1. Since $\delta(T_{\Gamma})$ preserves a discrete cocompact subgroup of $M/\Delta_0^{\frac{d}{2}}$, $\delta(T_{\Gamma})$ is a discrete subgroup of $a(M/\Delta_0^{\frac{d}{2}})$. Hence T_{Γ} is a discrete subset of a(M). Lemma 8 now applies to complete the proof of Theorem 1.

REFERENCES

- 1. L. Auslander, Solvable Lie groups acting on nilmanifolds, Amer. J. Math. 82 (1960), 653-660.
- 2. ——, Discrete uniform subgroups of solvable Lie groups, Trans. Amer. Math. Soc. 99 (1961), 398-402.
- 3. ——, Fundamental groups of compact solvmanifolds, Amer. J. Math. 82 (1960), 689-697.
- 4. L. Auslander and M. Auslander, Solvable Lie groups and locally Euclidean Riemann spaces, Proc. Amer. Math. Soc. 9 (1958), 933-941.
- 5. L. Auslander and J. Brezin, Almost algebraic Lie algebras, J. Algebra 8 (1968), 295-313.
- 6. G. D. Mostow, Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954), 1-27.
- 7. H. C. Wang, Discrete subgroups of solvable Lie groups. I, Ann. of Math. (2) 64 (1956), 1-19.

Graduate Center, City University of New York, New York, New York 10036