
A PROOF OF A CONJECTURE OF ERDÖS 

BY RICHARD B. CRITTENDEN1 AND C. L. VANDEN EYNDEN1 

Communicated by Paul T. Bateman, May 1, 1969 

In 1958 S. K. Stein [5] conjectured that if no x satisfied more than 
one of the congruences 

x s a,(mod b{)9 h < b% < • • • < bn, 

then there existed an x% 1 ^*x^2n, satisfying none of them. P. Erdös 
proved this with nln instead of 2n [ l ] and proposed the stronger con­
jecture that any system of n congruence classes not covering all 
integers omits a positive integer not exceeding 2n [ l ] , [2], [3]. Later 
John Selfridge proved Stein's conjecture [4]. 

We have proved Erdös's conjecture, and sketch the proof in this 
note. It is proper to mention that at the meeting of the American 
Mathematical Society in New Orleans in January 1969, Selfridge, in 
the course of a ten minute talk on another subject, made an informal 
preliminary announcement that he had also proved Erdös' conjecture. 

Let us suppose the conjecture is false and that n is the smallest 
number for which it fails. 

Claim 1. There exists a set of n congruences such that 
(A) each of the integers 1, 2, • • • , 2W satisfies at least one of the 

congruences but 0 does not, 
(B) all the moduli are prime, and 
(C) if k of the congruences have modulus p, then 2k<p. 
PROOF. By our hypothesis there exist congruences #=a* (mod &<), 

l^i^n, such that if T is the set of integers satisfying none of the 
congruences, then x^Tt l f g # ^ 2 n , yet TT£0. T contains negative 
integers; let x0 be the greatest nonpositive element of T. Then the 
congruences x=a,i—Xo (mod ô») satisfy (A). 

Now we assume we have n congruences satisfying. (A). Suppose 
x^a (mod b) is one. Since (A) implies b\a, there exists a prime p such 
that pa\ b but p«\a. Suppose b =paq. Then we could replace this con­
gruence with x=a (mod pa) without losing (A). Moreover, if a > l 
and p\ay our original congruence could be replaced with x^a (mod p), 
still without losing (A). Thus we may assume all our congruences are 
of the form # = a (mod pa) (for various primes p), where a> 1 implies 
p\ a. This is a start toward (B). 

We illustrate our proof of (C) by taking the case p = 2. By the last 
paragraph we can assume our congruences are of three types: 
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(1) x=a (mod b), b odd, 
(2) x = l (mod 2), and 
(3) x = 2a (mod 2«), a > l . 

If the type (2) congruence occurs, then each of the 2n~1 even integers 
between 1 and 2n must be a solution to at least one of the remaining 
w —1 congruences of types (1) and (3). The same can be said if we 
replace each type (1) congruence x=a (mod b) by x = a + e 6 (mod 2b), 
where e = 0 if a is even and 1 if a is odd, since no even solutions have 
been lost. 

We now have n — 1 congruences of the form x = 2a (mod 2b), having 
among their solutions 2, 4, 6, • • • , 2n but not 0. Then each of 
1, 2, • • • , 2n"_1 is a solution to one of the w —1 congruences x^a 
(mod b) ; 0 still is not. This contradicts our assumption that n is the 
least integer for which the conjecture fails. The proof of (C) for arbi­
trary prime p is analogous. 

Now (B). If p is a fixed prime we know we can assume our congru­
ences are of types 

(1) x=a (mod b)f p\b, 
(2) # = a (mod p)f p\a, and 
(3) x=a ( m o d £ a ) , a > l , p\a. 

Since 2p-1*zpt (C) tells us there exists x0 such that p\xQ and XQ solves 
no type-(2) congruence. Let M be the product of the moduli of the 
type-(l) congruences and choose r such that rM=Xo (mod p). It is 
easily checked that rM satisfies no congruence, even if we change the 
modulus of each type (3) congruence from p« to pf since p\rM. This 
loses (A), but (A) can be regained by a shift just as at the beginning 
of this proof. Q.E.D. 

Claim 2. Suppose Si, 5», • • • , 5# are sets of integers such that Si 
consists exactly of ki residue classes modulo biy l^i^t, and that 
(bi, bj) = 1 if iyéj. Then if l^s^t and N is the number of integers x, 
1 <Zx ^ 2n, such that x is in none of the S's, we have 

N > i + 2»(i - £ ksi) n a - *</w 

-(i+£*«)na + *<). 
PROOF. Let Ny..., be the number of integers x, l2g#^2*, in 

SiC\Sjr\ • • • OS, . It is well known that 

(1) N - 2- - £ AT, + £ ify - £ # » + • • • • 
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If C(Si) is the characteristic function of Si, it is easily seen that 
(1 - Z U + i C(S,)) g K - . + i (1 - C(S<)). From this and 

£ccs,ns,n • • • r»5,)W = N(,.... 

we conclude that the right side of (1) is ^ 

(2) 2» - £ tf, + £ ' # </ ~ Z ' N& + • • • , 

where 23' means that only terms with at most one subscript >s 
are added in. 

Since the 6's are relatively prime in pairs the Chinese remainder 
theorem implies that iVy...» counts the solutions of kîkj • • • kg con­
gruences modulo bibj • • • bz. Thus Nij...g = 2nkikj • • • kg/bib,- • • • bg 

+Eij...tf where | £#.. . , | <kikj...kt. Substituting this in (2) gives 

N 

where \E\ < 1 + X)*«I **+ ] L X A & / + • ' • • The claim follows di­
rectly. Q.E.D. 

The rest of the proof consists in showing that given a set of con­
gruences as in Claim 1 we can apply Claim 2 so as to prove N>0, 
in contradiction to (A). We sketch the proof for wè20; smaller n 
can be handled by special arguments. Let there be ki congruences 
modulo pi for 1 ^i^t, where them's are prime and pi<p%< • • • <pt. 
We take 5= [n/3] — 1. (If this is more than t everything works with 
s = / —1.) We will show 

2»(i- i: v^na-v^ 
(3) • *-+1 

The right side of (3) has s+1 factors with sum n+s+l and so is 
maximized by ((w+s+l)/(s+l))*+ 1^4n / 8 . From inspection of a table 
of primes and known theorems we have ?r(n —s)^ [n/3] for n*£2Q; 
from this we conclude ]C*-*+i ki^n—$<p[n/z)* Then letting po^pin/z] 
andfe0= S<-*+i ki we have the lef t side of (3) is à 2 n H { . 0 (1— ki/pi), 
where fe»^ [log2 pi], l^i^s. By elementary inequalities this product 
can be seen to exceed 
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K'-TX'-IX'-IX'-ÏÏ)13'"""-
This is easily seen to be greater than 4n/s for n ^ 20. 
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