NORMS ON QUOTIENT SPACES

BY ARNOLD LEBOW AND MARTIN SCHECHTER

Communicated by Bertram Yood, June 23, 1967

1. Perturbation classes. Let S be a subset of a Banach space α over the complex numbers, and assume that $\alpha S \subset S$ for each scalar $\alpha \neq 0$. Let P(S) denote the set of elements of α that perturb S into itself, i.e., $P(S) = \{a \in \alpha: a+s \in S \text{ for all } s \in S\}$.

PROPOSITION 1.1. P(S) is a linear subspace of G. If S is an open subset of G, then P(S) is closed.

PROPOSITION 1.2. Let $S_1 \subset S_2$ be two such subsets, and assume that S_1 is open and S_2 does not contain any boundary point of S_1 . Then $P(S_2) \subset P(S_1)$.

PROPOSITION 1.3. Assume that α is a Banach algebra with identity e. Let G denote the set of invertible elements in α . If $GS \subset S$, then P(S) is a left ideal. If $SG \subset S$, then P(S) is a right ideal.

PROPOSITION 1.4. P(G) = R, the radical of α .

Let G_l (G_r) denote the set of left (right) invertible elements of α , and let H_l (H_r) denote the set of elements of α that are not left (right) topological divisors of zero.

THEOREM 1.5.
$$P(H_l) \subset P(G_l) = R = P(G_r) \supset P(H_r)$$
.

Let X be a Banach space, and let B(X) [$\mathfrak{K}(X)$] denote the set of bounded (compact) linear operators on X. Take $\mathfrak{C} = B(X)/\mathfrak{K}(X)$ and let π be the canonical homomorphism from B(X) to \mathfrak{C} . Set

$$\Phi(X) = \pi^{-1}(G), \qquad \Phi_l(X) = \pi^{-1}(G_l), \qquad \Phi_r(X) = \pi^{-1}(G_r).$$

It is well known [6] that $\Phi_l(X)$ consists of those operators having finite nullity and closed, complemented ranges, and that $\Phi_r(X)$ consists of those operators having complemented null spaces and closed ranges with finite codimensions. $\Phi(X) = \Phi_l(X) \cap \Phi_r(X)$ is the set of Fredholm operators on X.

Theorem 1.6.
$$P(\Phi) = P(\Phi_l) = P(\Phi_r) = \pi^{-1}(R)$$
.

Let Z be any subset of $\{0, \pm 1, \pm 2, \cdots, \pm \infty\}$, and let Φ_i be the collection of those operators $A \in \Phi_i(X) \cup \Phi_r(X)$ such that $i(A) \in Z$, where $i(A) = \dim N(A) - \dim N(A')$.

THEOREM 1.7. $P(\Phi_s) = \pi^{-1}(R)$.

2. Measures of noncompactness. Let X, Y be Banach spaces, and denote the set of bounded (compact) linear operators from X to Y by B(X, Y) [$\mathcal{K}(X, Y)$]. Let S_X denote the unit ball in X. For any bounded subset Ω of X let $q(\Omega)$ denote the greatest lower bound of the numbers r such that Ω can be covered by a finite collection of spheres of radius r. For $A \in B(X, Y)$ set $||A||_q = q[A(S_X)]$. Let $||A||_m$ denote the greatest lower bound of all numbers η such that $||Ax|| \leq \eta ||x||$ for all x in some subspace having finite codimension. Let π denote the canonical homomorphism of B(X, Y) into $B(X, Y)/\mathcal{K}(X, Y)$.

PROPOSITION 2.1. Both $\|\cdot\|_q$ and $\|\cdot\|_m$ are seminorms and satisfy $\|BA\|_q \le \|B\|_q \|A\|_q$, $\|BA\|_m \le \|B\|_m \|A\|_m$, $\|A\|_q \le \|\pi(A)\|$, $\|A+K\|_q = \|A\|_q$, $\|A+K\|_m = \|A\|_m$ for $K \in \mathfrak{K}(X, Y)$.

THEOREM 2.2. $||A||_q/2 \le ||A||_m \le 2||A||_q$.

DEFINITION 2.3. A Banach space X will be said to have the compact approximation property with constant γ if for each $\epsilon > 0$ and finite set of points x_1, \dots, x_n in X there is an operator $K \in \mathcal{K}(X)$ such that $||I - K|| \leq \gamma$ and $||x_j - Kx_j|| < \epsilon$ for $1 \leq j \leq n$.

THEOREM 2.4. If Y has the compact approximation property with constant γ , then $\|\pi(A)\| \leq \gamma \|A\|_q$. Thus $B(X, Y)/\mathfrak{K}(X, Y)$ is complete with respect to the norms induced by $\|\cdot\|_q$ and $\|\cdot\|_m$.

3. Semi-Fredholm operators. An operator $A \in B(X, Y)$ is in $\Phi_+(X, Y)$ if it has finite nullity and closed range.

THEOREM 3.1. An operator A is in $\Phi_+(X, Y)$ if and only if for each Banach space Z there is a constant C such that $||T||_m \leq C||AT||_m$, $T \in B(Z, X)$. The constant does not depend on Z.

COROLLARY 3.2. If $A \in \Phi_+(X, Y)$ and X has the compact approximation property, then $\|\pi(T)\| \le C \|\pi(AT)\|$, $T \in B(Z, X)$, for any Banach space Z.

DEFINITION 3.3. For $A \in B(X, Y)$ set $q_A = \text{glb } q[A(\Omega)]/q(\Omega)$, where the glb is taken over all bounded subsets Ω of X.

THEOREM 3.4. $A \in \Phi_+(X, Y)$ if and only if $q_A \neq 0$.

An operator $A \in B(X, Y)$ is in $\Phi(X, Y)$ if its range is closed and has finite codimension.

THEOREM 3.5. $A \in \Phi_{-}(X, Y)$ if and only if $\beta(A - K) < \infty$ for all $K \in \mathfrak{X}(X, Y)$, where $\beta(E) = \operatorname{codim} \overline{R(E)}$.

THEOREM 3.6. $A \in \Phi_{-}(X, Y)$ if and only if for each Z there is a constant C such that $||T||_m \le C||TA||_m$, $T \in B(Y, Z)$. The constant C is independent of Z.

We now consider the case X = Y. Let $r_{\sigma}(A)$ denote the spectral radius of an operator A.

THEOREM 3.7. If $||A^n||_m < 1$ for some $n \ge 1$, then $I - A \in \Phi(X)$ and i(I - A) = 0.

THEOREM 3.8.

$$r_{\sigma}[\pi(A)] = \lim_{n\to\infty} \|A_n\|_{m}^{1/n} = \lim_{n\to\infty} \|A^n\|_{q}^{1/n} = \max_{\lambda\in\sigma_{\sigma}(A)} |\lambda|,$$

where $\sigma_{\epsilon}(A)$ denotes the essential spectrum of A according to any of the usual definitions [8], [9].

COROLLARY 3.9. $r_{\sigma}[\pi(A)] \ge q_A$. Hence an operator in $\Phi_+(X)$ cannot be a Riesz operator.

DEFINITION 3.10. A space X has the range property if for each $\epsilon > 0$ and each $A \in B(X)$ with dim $N(A) = \infty$ there is a $T \in B(X)$ such that $||T||_q = 1$ and $q[T(S_X) \setminus N(A)] < \epsilon$. All subprojective [10] spaces have the range property.

THEOREM 3.11. If X has the range property, then $A \in \Phi_+(X)$ if and only if $||T||_q \le C||AT||_q$ for all $T \in B(X)$.

THEOREM 3.12. If X is subprojective and $\pi(A)$ is not a left zero divisor then $A \in \Phi_+(X)$.

COROLLARY 3.13. If X is subprojective and has the compact approximation property, then every topological left zero divisor in $B(X)/\mathfrak{K}(X)$ is a left zero divisor.

THEOREM 3.14. If X is superprojective [10] and $\pi(A)$ is not a right zero divisor, then $A \in \Phi(X)$.

COROLLARY 3.15. If X is both subprojective and superprojective, then every element of B(X)/K(X) which is not a zero divisor is invertible.

4. Remarks. Some of the results of §1 were also obtained by B. Gramsch [12]. The q-seminorm was studied by Gol'denšteĭn, Gokhberg, Markus [1], [2] and Darbo [3]. The basic idea goes back to Kuratowski [11]. For the q-seminorm Propostion 2.1 was proved in [1]. The compact approximation property is weaker than the metric approximation property of Grothendieck [4] and is similar to one of Bonsall [5].

BIBLIOGRAPHY

- 1. L. S. Gol'denštein, I. Ts. Gokhberg and A. S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Učhen. Zap. Kishinevsk. Un-ta 29 (1957), 29-36.
- 2. L. S. Gol'denšteĭn and A. S. Markus, On the measure of non-compactness of bounded sets and of linear operators, Studies in Algebra and Math. Anal., pp. 45-54, Izdat. "Karta Moldovenjaskei," Kishinev, 1965. (Russian)
- 3. G. Darbo, Punti uniti in transformazioni a condiminio non compatto, Rend. Sem. Mat. Padova 24 (1955), 84-92.
- 4. Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., no. 16, Amer. Math. Soc., Providence, R. I., 1955.
- 5. Frank F. Bonsall, Compact linear operators, Lecture notes, Yale University, New Haven, Conn., 1967.
- 6. Bertram Yood, Properties of linear transformations preserved under addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.
- 7. Martin Schechter, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 64 (1968), 1139-1144.
- 8. K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Ann. Appl. 25 (1969), 121-127.
- 9. Martin Schechter, On perturbations of essential spectra, J. London Math. Soc. 1 (1969), 343-347.
- 10. R. J. Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113 (1964), 252-261.
 - 11. Casmir Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309.
- 12. B. Gramsch, Über analytische Stroungen und den Index von Fredholm-operatoren auf Banachraumen, University of Maryland, College Park, Md., 1969.

BELFER GRADUATE SCHOOL OF SCIENCE, YESHIVA UNIVERSITY, NEW YORK, NEW YORK 10033