
MINIMAL VARIETIES1 

BY ROBERT OSSERMAN 

ABSTRACT. This is a survey article, reporting on recent results in 
the theory of minimal varieties in euclidean space, and including a 
number of theorems on minimal submanifolds of spheres. 

Introduction. It was exactly 100 years ago, in 1868, that Beltrami 
presented the first general survey of the theory of minimal surfaces 
[4]. This survey has been referred to by Blaschke [5, p. 118] as repre­
senting the "stormy youth" of the subject, in contrast to its "tired old 
age" in the nineteen thirties. Although I would take issue with both of 
Blaschke's characterizations, I think it incontestable that the last 
ten years have seen a "stormy rebirth" of the theory of minimal sur­
faces. One of the most striking developments, although certainly not 
the only one, has been the creation of a theory of higher-dimensional 
minimal varieties. Since several recent surveys (Nitsche [3S], Osser-
man [36(c)]) have been devoted to two-dimensional minimal sur­
faces, the goal here will be to concentrate on the higher-dimensional 
case, and restrict the discussion of two-dimensional surfaces to some 
of the most recent results. Furthermore, we shall discuss only minimal 
varieties in euclidean spaces, except for §6, which deals also with 
minimal submanifolds of spheres. Since much recent work has been 
devoted to minimal submanifolds of spheres, and some to arbitrary 
Riemannian manifolds, we have included these topics in the list of 
references. Note in particular the set of lecture notes by Chern [10(b) ]. 

There are many points of view from which minimal varieties may 
be studied. The emphasis here will be on their differential-geometric 
properties, and on the associated differential equations. For detailed 
discussions relative to the calculus of variations and to measure the-
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ory, see the recent books of Morrey [33] and Fédérer [19]. These 
books present, in particular, extensive treatments of Plateau's prob­
lem, which we shall not discuss here. In this connection, see also the 
book of Almgren [2(b)], and the recent papers of Allard [ l ] , Almgren 
[2(c)], and Hildebrandt [25].2 

1. Basic notation and definitions; variational formula. We start 
with a brief review of some basic facts concerning local properties of 
w-dimensional manifolds in Rn. For further details, see Osserman 
[36(c)] for the case w = 2, and Eisenhart [18] for arbitrary m. 

Let u = (uu - - - , um) and x = (xi, • • • , xn) denote points in Rm and 
Rn respectively. Let D be a domain in Rm and let 

x(u): D~>Rn 

be a differentiate map. We do not specify the order of differentiabil­
ity, since it is generally straightforward to verify what order is needed 
in a particular case. For most of our considerations, C2 or (? is sufficient. 

We introduce the standard notation of classical differential ge­
ometry: 

dx dx * dxk dxk 
gij = = 2^, > i,j=l,--',tn, 

(1.1) dut duj k=i dui dUj 
g = d e t ( ^ ) , (g<0 = (gij)-\ 

Thus, the gli are the elements of the inverse matrix to (g,-/), and the 
existence of this inverse is one of our basic assumptions. Namely, the 
map x(u) is called regular if the following equivalent properties hold. 

(0 g*0, 
(ii) £ > 0 , 
(iii) the jacobian matrix (dxi/duj) has rank m, 
(iv) the tangent vectors dx/dui, • • • , dx/dum are linearly inde­

pendent. 
The equivalence of (i), (ii), (iii) follows immediately from the 

identity 

detfa,) = 22 —, T • 
is«i<-*-<»»s»L C^i, • • • , Um) J 

2 Added in proof (September 22,1969). Since this paper was written two important 
contributions have been made to the classical solution of Plateau's problem, showing 
interior and boundary regularity respectively. For this, see Osserman [56] and 
Nitsche [55(b)]. Also Hildebrandt [51 ], Heinz and Toni [49], and Kinderlehrer [53]. 
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Let x(u) be a regular map of the above form, and assume further 
that x(u) is a one-one map of the domain D onto a set M in Rn. Given 
any point pÇzM, let p = x(a) for aÇJ). Then condition (iv) guaran­
tees that the vectors (dx/dui) (a), • • • , (dx/dum)(a) span an m-dimen-
sional space called the tangent space to M a t p and denoted by TP(M). 
The orthogonal complement to TP(M) in Rn is an (n—m)-dimen-
sional space called the normal space to M a t p and denoted by NP(M). 

Let F=D'\JdD' be a compact subset of -D, where Z>' is a domain 
with smooth boundary dD'. The image of F on Af has m-dimensional 
volume equal to 

/
Vg dU\ • • • rfffm. 

We wish to consider the variation in volume associated with a varia­
tion in the mapping x(u). Let 

x(u;t): DX I->Rn 

define a one-parameter family of mappings differentiable in DXIj 
where I is some interval about 0 on the real line, such that x{u\ 0) 
coincides with our original map x(u). For each t we have correspond­
ing quantities g%j(t) and g(t). Since g(t) depends continuously on t, 
the regularity of x(u) implies the regularity of x(u; t) on some domain 
containing F for all sufficiently small /. The volume of the image of F 
under x(u; t) is 

(1.2) V(t) = f y/gfödui • • -dum. 
J F 

We would like a formula for t h e i r s / variation V'(t) a t 2 = 0. For this 
purpose we consider at each point p=x{a) of M the variation vector 

d 
E = — *(a;*)|i-o-

at 

The vector E is simply the tangent vector a t p to the curve described 
by the image of a fixed point a £ D as t varies. We decompose it into 
its tangent and normal components: 

E = ET + EN, where ET G T9(M), EN G NP(M). 

If ET = 0 a t each point, the variation is called a normal variation. 
In that case, the variational formula is particularly simple. The 
effect of the variation is determined by the variational vector field 
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E = EN, the precise expression being 

(1.3) V'(0) = - f E-HVgdut • • • dumy 
J F 

where ffisa vector field determined by the manifold M. The vector 
H a t each point p of M is called the mean curvature vector of M a t p. 
We shall derive various expressions for it below. First let us note that 
it is a normal vector: HÇLNP(M), and that the variational formula 
(1.3) provides important information about the significance of H. 

To begin with, we observe that the vector field E may be prescribed 
arbitrarily and a corresponding variation may be formed in many 
ways. The simplest would be 

(1.4) x(u; t) = x(u) + Œ. 

In particular, if we choose E = H, then we find 

(1.5) F'(0) = - f I B\W~gdux • • • dum, 

so that F ' ( 0 ) < 0 unless i J = 0 . In fact, if H=0, then equation (1.3) 
shows that the first variation of volume is zero for every normal varia­
tion. On the other hand, if a t some point pÇ_M, H5*0, then we may 
choose a variation vector field of the form E=\H where X(£)>0, 
X^O everywhere, and X = 0 outside an arbitrarily small neighborhood 
A7 of p. Then (1.4) gives a variation which leaves M fixed outside N 
and which strictly decreases volume. 

In view of these facts, M is called minimal if H=0. 
Equation (1.5) provides a valuable intuitive interpretation of the 

mean curvature vector H. Namely, it may be pictured as pointing 
toward the "inside" of M, in the sense that if M is deformed by 
moving each point in the direction of the mean curvature vector a t 
that point, then the volume of M will initially decrease. 

In the case m = 1, M is curve x(u) in Rn, and regularity means that 
x'(u) 7*0 which implies that M may be parameterized with respect to 
arc length 5. There is a t each point a well-defined unit tangent vector 

dx dx / \dx\ 

ds du I \du\ 

and a curvature vector 

dT/ds = d2x/ds2. 
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In this case, F is an interval [a, j3] on the real line, and instead of 
volume we have arc length 

-l I xf(u) | du. 

Corresponding to a variation with variation vector field E, we have 
the formula for variation in arc length : 

£<«,)--ƒ' E-Hds 

where H is simply the curvature vector d2x/ds*. Thus a one-dimen­
sional minimal variety in Rn is a straight line. Furthermore, the inter­
pretation of H as indicating the "inside" of M is clear here, since the 
curvature vector, defined as the derivative of the unit tangent Tt 

is easily seen as directed toward what we would describe as the 
"inside" of a curve. (In particular, at any point p where the curvature 
vector H is nonzero, if we consider the hyperplane through p per­
pendicular to H, then the curve lies locally on that side of the hyper­
plane indicated by H.) 

For arbitrary m, the mean curvature vector H at a point p of M 
may be described in terms of the curvature vectors of all regular 
curves through p lying on M. Namely, if x(s) is such a curve, where s 
is the parameter of arc length, then x(s) is the image of a curve u(s) 
lying in Dt and 

dx ™ dx 
(i.6) - = ! > / ( * ) - — > 

ds i»i dut 

(1.7) — - £ ul (s)uj (s) —— + £ uns) — • 
ds1 ij~i dUidUj i^i dui 

Since dx/dui is a tangent vector to M, the component of the curvature 
vector normal to M is given by 

( d2x\N / d2x \N 

where we use the notation 

/ d2x \N 

(1.9) Btj _ / a2x y 
KdUidUj/ 
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Since the unit tangent T = dx/ds is determined by and determines the 
quantities w/(s) by (1.6), it follows from (1.8) that the normal com­
ponent of the curvature vector is the same for all curves on M having 
a given tangent direction T at p. It is called the normal curvature 
vector of Af at p in the direction T, and we denote it by k(T). Thus, by 
(1.8) and (1.9), 

(1.10) k(T) = T/u/(s)uj(s)BiJ 

where 

T = Z « / (s)dx/dUi. 

Another interpretation of k(T) is the following. Let L be the 
(»—m+1)-dimensional affine subspace of J?nthrough £,generated by T 
and NP(M). By the implicit function theorem, LC\M defines a regular 
curve near p called the normal section of M in the direction T. The 
curvature vector of this curve lies in NP(M) and hence coincides with 
the normal curvature vector k(T). 

Let Tu • • • , Tm be an orthonormal basis of TP(M). Then the mean 
curvature vector H of M at p is given by 

H = k{Tx) + • • • + k(Tm), 

the sum of the normal curvatures on the right being independent of 
the choice of basis. 

Analytically, we introduce at each point p of M the first funda­
mental form, which is a map TP(M)—>R defined by 

2 

and the second fundamental form, a map 

TP(M) -* NP(M) 

defined by 

dUi 

The values of the second fundamental form, under the constraint that 
the first fundamental form be equal to one, represent the totality of 
normal curvature vectors to M at p. It follows that the mean curva­
ture vector is given by 

Zfc 
dx 

1 
dUi 

E 6 
dx 

dUi 
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(l.ii) H= £ r 7 ^ = ( Z ««—-- ) • 

The equation (1.3) for the first variation may be derived by dif­
ferentiating (1.2) under the integral sign and using (1.11) together 
with (1.1) and the identity 

at ij at 

which holds for the derivative of the determinant of any nonsingular 
matrix. 

We return briefly to the variational formula in the case of an arbi­
trary (not necessarily normal) variation. I t turns out that the terms 
involving the tangential part ET of the variational vector field may 
be reduced to an integral over the boundary of F. If, in particular, the 
boundary is held fixed, the formula becomes 

V'(0) = - f E^'HVgdu! 
J F 

dun 

Thus, the condition H=0 means that the volume is stationary for 
all variations which keep the boundary fixed. 

2. The Laplace-Beltrami operator; nonparametric representation. 
Given a regular one-to-one map 

x(u) : D —• M C Rn, 

we define the Laplace-Beltrami operator A on M for every C2 function 
<t>: M-*R by 

(2.1) A* = - = Z —Wt Z g" — )-
Vg i dUi\ j duj/ 

The function <f> is harmonic if A<£==0. 
If we apply the operator A to each coordinate function xk we obtain 

a vector 

Ax = (A#i, • • • , Axn). 

LEMMA 2.1. AxÇzNp{M) at each point p = x(u). 

PROOF. For each k, one finds Ax 'dx/duk = 0 by a computation, 
using the identity (1.12) with t = uk. 
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THEOREM 2.1. For an arbitrary regular map x(u), 

(2.2) As = H. 

PROOF. Using (2.1), 

1 _ d _ dx _ d2x 
(2.3) AX = —= £ — ( vg r'O — + E ry -

Since the first term on the right is tangent to M, we have by (1.11) 

( d2x \N 

22 g** ) = (Ax)N = Ax. 
dUidUj/ 

COROLLARY. M is minimal if and only if each coordinate f unction xk 

is harmonic on M. 

We turn next to a special set of parameters on M. By virtue of 
property (iii) in the definition of regularity, together with the implicit 
function theorem, it follows that each point of M has a neighborhood 
which may be represented by solving for n — m of the coordinates xk 

in terms of the other m coordinates. By relabeling the coordinates we 
may assume that this neighborhood on M may be represented in 
the form 

(2.4) xk = fk(xi, • • • , xm), k = m + 1, • • • , ». 

This is called a nonparametric representation of the neighborhood on 
M. All previous formulas may be applied, substituting Uk = Xk, 
k = l, • • • , m. 

THEOREM 2.2. Let a manifold M be given in the nonparametric form 
(2.4). Then the following statements are equivalent. 

(a) M is minimal^ 
(b) the f unctions f * satisfy the equations 

(2.5) Z g*—J— = 0, k = m + 1, • • • , n; 
»,i—i oXidXj 

(c) the f unctions fk satisfy equations (2.5) together with 

(2.6) jt 4~ (VI r ) = 0, j = 1, • • - , m. 
*•* dXi 

REMARK. The quantities g»y, gij\ and g in equations (2.5) and (2.6) 
are of course computed with respect to the parameters X\y • • • , xm. 
Specifically, the gy are quadratic polynomials in the partial deriva­
tives dfk/dxi. 
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PROOF. Equation (2.3) yields 

1 A d 
A** = —= Z — WgZik), * = 1, • • • , a*. 

Vg <~i dXi 

Thus H = 0=»A^* = 0=» equations (2.6) hold. Substituting back in 
(2.1) shows that if M is minimal, then 

(2.7) A* = £ gu—— 
»,y*l öXiöXj 

for any function <f>. In particular, using the coordinate functions 
0=#*=/*(*i , • • • , xm), k = m + ly • • • , n yields equations (2.5) 
whenever i J = 0 . Thus (a)==>(c). Clearly (c)=»(b). Finally, to show 
(b)=>(a), note that the equations 

A à2xk 

»\y-i dXidXj 

hold trivially for any nonparametric representation, since the second 
derivatives d2Xk/dXidXj all vanish. Thus, if equations (2.5) hold, it fol­
lows that the second term on the right-hand side of (2.3) must vanish. 
But the first term is a linear combination of tangent vectors. Thus 
AxÇzTp(M), and it follows from Lemma 2.1 that A# = 0. By Theorem 
2.1, M is minimal. 

The main point of Theorem 2.2 is that it shows that the local study 
of minimal varieties in Euclidean space is equivalent to the study of 
the elliptic system of partial differential equations (2.5). Historically, 
this equivalence has been used both to derive properties of minimal 
surfaces by applying results on differential equations and to obtain 
properties of solutions by using geometric methods. 

A side benefit of Theorem 2.2 is that we have found an additional 
set of equations (2.6) which must be satisfied by any solution of (2.5). 
These equations seem to have been first noticed in the paper [36(b)], 
where they are used in the case m = 2 to generalize to arbitrary n 
various results known earlier for » = 3 (see §5 below). A different form 
of the same equations were first derived for m = 2 in [36(c) ]. 

The system (2.5) reduces to a single equation when n = m+l. I t is 
this case which has yielded the most significant body of results to 
date. We study it in the following section. 

3. Nonparametric minimal hypersurfaces. A hypersurface M of 
Rn is given in nonparametric form by a single function 
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(3.1) xn = f(xi, • • • , xm), n = m + 1. 

With respect to the parameters #1, • • • , xm, we have 

(3.2) * , = *<, + / - - ^ • 

We find an expression for the inverse matrix (giy)> following Flanders 
[20]. Denote the gradient vector of ƒ by 

(3.3) p = (pu - - • , />ro), pk = d//d«*. 

Then, according to (3.2), the matrix (g.y) may be written as 

(3.4) (ft,) =I + pTp 

where i" is the identity matrix. Let c be a constant to be deter­
mined. Then 

(/ - cfiPpHl + pTp) = / + (1 - c - c\ p\*)pTp, 

using ppT= \p\2* We make the right side reduce to the identity by 
choosing c = l / ( l + |/>|2). Thus 

(3-5) ^ - / - _ * _ , < , , . 

Since the matrix pTp = (pip/) obviously has rank at most equal to 1 
and eigenvector pT with corresponding eigenvalue \p\2, its eigen­
values are 0 with multiplicity m — 1 and |^ |2 . By (3.4), (ft,) has 
eigenvalues 1 with multiplicity m — 1 and 1 +1 p |2 . Thus 

(3.6) g = det(fty) = 1 + | # | 2 , 

and (3.5) becomes 

1 df df 
(3.7) f < y „ , „ _ _ ^ L ^ l . 

The condition (2.5) that ikf be minimal reduces to 

~ d2f 1 « a/ c>/ a2/ 
(3.8) £ — ~ ~ E — — — = 0. 

*»i d%% g »\/-i àXi dXj dXidXj 

This is easily seen to be equivalent to 



1102 ROBERT OSSERMAN [November 

(3.« i - î . ( ' f ) - o , r-i + t(f)'. 
Equation (3.9) is perhaps the neatest form of the minimal hyper-

surface equation. 
For hypersurfaces, the normal space NP(M) is one-dimensional a t 

each point, and consists of scalar multiples of a unit normal vector v. 
I t is usual to choose v so that the set of vectors 

dx/dui, • • • , dx/dum, v 

has positive orientation. In the nonparametric case (3.1), it is immedi­
ately verified that the vector 

(3.10) „_-L(--^ , ••-,—> l) 
Vg\ dxx dxm / 

is such a unit normal. Then 

(3.11) Bij = bijv, H = hv 

define the scalar second fundamental form and mean curvature 
respectively. Further, 

d*x / d2f \ 
— — = (0, - - - , 0 , — - i - ) 
dXidXj \ dXidXj/ 

implies 

/ d2x \N d2x 1 <W 
(3.12) hi, = Bij-v = ( ) 'v = v = - = — — 

XdXidXj/ dXidXj y/g dXidXj 

and 

_ 1 _ d2/ _ d / 1 d / \ 

(3.13) * - * • „ - Z r ^ = 7 Z f -f- = £—(-= f-Y 
V g dXidXj oXiWg oXi/ 

Thus the scalar second fundamental form equals up to a scalar factor, 
the Hessian matrix of/, and the scalar mean curvature is just the left-
hand side of equation (3.9). 

4. Properties of solutions of the minimal hypersurface equation. 
In this section we list some of the most important theorems which 
have been proved about solutions of the minimal hypersurface equa­
tion (3.9). We make no at tempt to give the proofs, but refer to the 
original papers. 

We begin with a result of a technical nature, due to Bombieri, 
de Giorgi, and Miranda [s]. 
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THEOREM 4.1. Let ƒ be a positive solution of (3.9) in a ball of radius p 
about the origin. There exist constants C\, c*> independent of ƒ, such that 

|V/(0) | uc1exp(c2f(0)/p). 

An inequality of this kind was first obtained in the case m = 2 by 
Finn. It has been successively sharpened by various authors until 
recently when Serrin [43(a) ] found the precise values of the constants 
involved. In terms of the quantity W2 = 1 +1 Vf |2 , he showed that 
for w = 2, 

W(0) ^ exp((x/2)/(0)/p). 

By an entire solution of (3.9) we mean a solution defined on all 
of Rm. 

THEOREM 4.2. Every entire solution of (3.9) bounded on one side is 
constanU 

The proof of this uses Theorem 4.1 to show that Vf is uniformly 
bounded (by ci, since p may be chosen arbitrarily large), and then a 
result of Moser [34] which asserts that such a solution must be 
constant. 

THEOREM 4.3. For n^St every entire solution of (3.9) is linear. 

The case n = 3 of this theorem is a classical result of Bernstein. A 
new proof of Bernstein's theorem given by Fleming [2l] became the 
basis for proving Theorem 4.3 in higher dimensions. This was done 
for w = 4 by de Giorgi [13], » = S by Almgren [2(a)], and w = 6, 7, 8 
by Simons [44]. A startling development was the subsequent discov­
ery of Bombieri, de Giorgi, and Giusti [7]. 

THEOREM 4.4. For n> 8, there exist nonlinear entire solutions of (3.9). 

This result must surely rank as one of the most surprising ones in 
all of differential equations. A brief discussion of the work leading up 
to Theorems 4.3 and 4.4 is given in §6 below. 

We consider next the question of singularities of solutions. Here 
we have a result of de Giorgi and Stampacchia [14]. 

THEOREM 4.5. Let K be a compact set in a domain D lying in Rm. 
Let f be a solution of (3.9) in D—K. If the (m — 1)-dimensional Haus-
dorff measure of K is zero, then f may be extended to a solution of (3.9) 
in all of D. 

This result has since been extended so that the set K need not be a 
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compact subset of D. Thus, if D is the unit ball in 2£8, a diameter 
would be a removable set. 

The theory of the minimal surface equation, which is a nonuni-
formly elliptic equation, differs from the theory of uniformly elliptic 
equations in various ways. One example is the fact that in Theorems 
4.3 and 4.5, one need not assume that the solution is bounded (or 
bounded on one side) as in the corresponding theorems for solutions 
of uniformly elliptic equations. Another example is the way the ge­
ometry of the boundary enters when studying the Dirichlet problem. 
The result here is the following. 

THEOREM 4.6. Let Dbea bounded domain in Rm with C2-boundary B. 
Necessary and sufficient that there exist a solution of (3.9) taking on 
arbitrarily prescribed continuous boundary values is that the mean curva­
ture vector of B in Rm should be directed toward the interior at each 
point of B. 

REMARKS. The mean curvature vector is allowed to vanish. The 
fact is that if at some point the mean curvature vector is directed 
toward the exterior of B, then it is possible to find (arbitrarily smooth) 
boundary values for which no solution exists. The surprising part is 
that convexity, which is needed in the theory of uniformly elliptic 
equations, plays no role here. In the case m = 2, however, the mean 
curvature vector is simply the curvature vector of the boundary 
curve, and the condition of Theorem 4.6 reduces to convexity of D* 
In higher dimensions, D need not even be simply connected. For 
example, when m = 3, if B is a torus with suitably chosen radii, its 
mean curvature vector will point toward the interior at each point. 

Theorem 4.6 was originally proved by Jenkins and Serrin [27] 
under the additional hypothesis that the boundary values be C2. The 
subsequent discovery of the estimate in Theorem 4.1 made possible 
the extension to arbitrary continuous boundary values. 

It has often been the case that a theorem first proved for minimal 
surfaces has pointed the way toward results of much greater gen­
erality. Theorem 4.6 has provided the impetus for deriving a general 
theory of boundary value problems which includes a number of previ­
ously isolated results. This theory has been developed by Serrin 
[43(b)]. He considers elliptic equations of the form 

A d2f 
2^ ay —— = b, 

t .y - l OXiOXj 

where the coefficients a# and b may depend on x, ƒ, and Vf. Certain 
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expressions involving the coefficients lead to a classification of these 
equations into categories which display remarkably different behavior 
relative to the Dirichlet problem. 

We note finally that there have been many papers dealing with 
solutions of equation (3.9) in addition to those referred to above. 
Some of them have been of a nature preliminary to the above the­
orems, and others have provided further information about solutions. 
Examples are Bombieri [ó], Gilbarg [23], Miranda [32(a)-(f)], 
Stampacchia [45 ]. 

5. Two-dimensional surfaces. The main feature which distin­
guishes the theory of w-dimensional minimal varieties with m>2 
from the case m = 2 is the applicability of complex-variable methods 
to the latter. In this section we discuss some of the most recent results 
for two-dimensional surfaces in Rn. 

A. Intrinsic characterizations. Let a positive definite symmetric 
matrix (gv) be given a t each point of a plane domain D. We may ask 
if there exists a map x(u): Z>—»2?3 which defines a minimal surface 
and whose first fundamental form corresponds to the given matrix 
(gij) at each point; i.e., the given gy are related to the map x(u) by 
relation (1.1). 

This question was first considered by Ricci [40 ]. His answer may 
be reformulated as follows. By the Gauss teorema egregium, we may 
calculate from the given gy the Gauss curvature K. If indeed there is 
a minimal surface having the given metric, then, as is well known, 

(5.1) K ^ 0 

a t every point. If this is the case, we may form the quantities 

(5.2) êiJ = V ^ f t * 

and, using these, compute the corresponding Gauss curvature K a t 
each point where K?*0. The answer to our question may then be 
stated: 

The given g„ arise locally as the first fundamental form of a minimal 
surface in Rz if and only if (SA) holds along with 

(5.3) K = 0. 

We shall call equation (5.3) the Ricci condition. Pinl [38] posed the 
question, to what extent can the Ricci condition be expected to hold 
for minimal surfaces in Rn, for n>3? This question was completely 
answered by Lawson [30(c)] who obtained the following result. 
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THEOREM 5.1. Let g^ be the coefficients of the first fundamental form 
of a minimal surface M in Rn. If the Ricci condition is satisfied by these 
gij y we know that they correspond locally to the first fundamental form of 
a minimal surface M in Rz. Then either 

1. M lies in Rz and belongs to a specific one-parameter family of sur­
faces associated to My or else 

2. M lies in J?6 and belongs to a specific two-parameter family of sur­
faces obtained from Û, none of which lie in any Rh. 

COROLLARY 1. The Ricci condition is an intrinsic condition which 
completely characterizes minimal surfaces lying in Rz among all minimal 
surfaces in R4 or R*. 

COROLLARY 2. The set of all minimal surfaces in Rn isometric to a 
given minimal surface in R* consists of a specific two-parameter family 
of surfaces lying in R*. 

The proof of this theorem uses results of Calabi [9(a) ] on isometric 
imbeddings of complex manifolds, together with a characterization 
of the Ricci condition in terms of the generalized Gauss map. (See 
the discussion of the Gauss map in part B of this section.) 

Calabi [9(c)] has also used his earlier results to obtain intrinsic 
characterizations of minimal surfaces in Rn. His method is the fol­
lowing. Let 

(5.4) x(u): D-^Rn 

define a minimal surface M. For two-dimensional surfaces, we know 
that there always exist isothermal parameters. This means that after 
a reparametrization, we may assume that 

(5.5) gn s g22, gu == 0 in D. 

Let \2(u) be the common value of gu and gn. Then for any function 
<f>: M-+R, equation (2.1) for the Laplace-Beltrami operator becomes 

1 / dV d2<f> \ 
A<£ = — ( + _ Î L ) . 

\2\dU!2 du2
2/ 

In other words, a function <f> is harmonic on M if and only if it is a 
harmonic function in the domain D. Introduce a complex parameter 

f = ui + iui 

in D. Then by Theorem 2.1, M is minimal if and only if each coordi-
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nate function xu is a harmonic function &*(£")• Equivalently, in a 
neighborhood of each point of D, the map (5.4) can be represented as 

(5.6) x(u) = Re *G0 

where*(f) = ($i(f)» • " • ,*« (f)), each $*(f) being an analytic f unction. 
We may note that this representation of minimal surfaces in Rn 

was pointed out already in 1874 by Lipschitz [31 ] , who studied sub-
varieties of arbitrary dimension and codimension in a space with a 
Riemannian metric, and showed that the vanishing of the mean 
curvature vector was equivalent to the vanishing of the first variation 
of volume. 

It is a simple matter to verify that the surface in Rn defined by 

(5.7) y(u) = Im *(f) 

is again a minimal surface, called the adjoint of the surface (5.6). 
Also for every real a, the surface defined by 

cos ax(u) + sin ay(u) 

is a minimal surface. This gives a one-parameter family of associate 
surfaces, which was referred to in Theorem 5.1. These surfaces are 
all isometric. 

Consider next the surface in R2n defined by 

(5.8) —= (*i(«), • • • , *»(«), yi(u), • • • , yn(u)). 

This is again a minimal surface isometric to the original surface (5.4). 
But identifying R2n with complex w-space Cw, we see that the surface 
(5.8) is the real form of the complex curve 

(5.9) Q(£):D->C*. 
v 2 

We have thus shown that every minimal surface in Rn is isometric 
to a complex analytic curve in Cn considered as a real surface. Since, 
conversely, a complex analytic curve considered as a real surface is 
always a minimal surface, we see that characterizing all metrics which 
may arise from minimal surfaces in some Rn is equivalent to charac­
terizing all those which arise from complex analytic curves in some 
CN. The relation between the possible pairs of values of n and N 
which can arise remains to be explored, and this is done by 
Calabi [9(c)]. 
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B. The generalized Gauss map. The Grassmannian G2,n of oriented 
2-planes in Rn may be identified in various ways with the complex 
hyperquadric 

/ n 

<?_! = <Z = («x, • • - , * ) £ Pn-l(C) | X) * = 0 

(See, for example, Chern [10(a)], and Osserman [36(a), (c)].) This 
identification allows us to define various structures on G2,n induced 
from the corresponding structures on complex projective space 
Pn_i(C). In particular, we have a complex analytic structure, and a 
Riemannian metric induced by the standard Fubini-Study metric on 
Pn_i(C), suitably normalized. (See, for example, [36(c), §12].) 

Given a two-dimensional surface M in Rn, the generalized Gauss 
map is the map 

g:M->G2,n 

defined by g(p) = TP(M). 
We shall henceforth identify C?2,n with Q«-2, and consider g as a map 

(5.10) g : ¥ - > e n - 2 C P n - i ( C ) . 

In the case of a minimal surface defined by (5.6), the Gauss map 
turns out to be given simply by 

(5.11) g:x(£)-+*(t); zk = *IW. 

Using this explicit formula, one may verify directly a number of 
properties of the Gauss map of minimal surfaces. For example, 

1. the Gauss map of a minimal surface is an antiholomorphic map; 
2. the Gauss curvature a t each point is the negative of the area 

dilation under the Gauss map; 
3. the minimal surface satisfies the Ricci condition (5.3) if and only 

if its image under the Gauss map has constant Gauss curvature 
equal to 1. 

Property 3 is the one referred to earlier which was used by Lawson 
to obtain Theorem 5.1. Properties 1 and 2 have been used to obtain 
various global results, such as the following. 

THEOREM 5.2 (CHERN [10(a)], OSSERMAN [36(a)]). A complete 
minimal surface in Rn is either a plane or else its image under the Gauss 
map intersects an everywhere dense set of hyperplanes in Pn_i(C). 

THEOREM 5.3 (CHERN AND OSSERMAN [12]). A complete minimal 

• 
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surface in Rn has finite total curvature if and only if its Gauss map 
is algebraic. 

THEOREM 5.4 (CHERN AND OSSERMAN [12]). Let M be a complete 
minimal surface in Rn, not a plane, and let m be the smallest dimension 
of a linear subspace L of P»_i(C) containing g(M). Then given any 
m(m + l)/2 hyperplanes of L in general position, g(M) must intersect 
at least one of them. 

Finally, we mention a recent result of Jonker [28] which depends 
in part on an examination of the Gauss map of two-dimensional sur­
faces in Rn. Jonker studies surfaces M whose mean curvature normal 
is always perpendicular to a fixed (n — 2)-dimensional linear space L. 
He shows that either M is a minimal surface in Rn or else that except 
for possible isolated points, M is locally a minimal submanifold of a 
cylindrical hypersurface generated by L. 

C. Nonparametric surfaces. By Theorem 2.5, the theory of non-
parametric two-dimensional surfaces coincides with the theory of 
solutions of the elliptic system of equations (2.5), with m~2. I t is 
natural to look for analogs of the results discussed in §4 for the case 
of hypersurfaces. We cite several which can be found in the papers 
of Osserman [36(b), (c)]. In the following statements, it is under­
stood throughout that we are dealing with the case m = 2. 

THEOREM 5.5. Every C2 solution of the system (2.5) is real analytic. 

The proof of this theorem, as well as of Theorems 5.6 and 5.7 
below, uses the auxiliary equations (2.6). In the case m = 2, they may 
be interpreted as exactness conditions guaranteeing the existence of a 
pair of new functions, which may be used as in previous proofs for n = 3. 

Theorem 4.2 goes over without change: 

THEOREM 5.6. Every entire solution of (2.5) which is bounded on one 
side is constant. 

The most obvious analog of Theorem 4.3 turns out to be false. 
Tha t is, there exists a great variety of entire solutions for all n*zi 
which need not be linear nor even lie in a hyperplane. However, there 
is an important restriction on entire solutions. To state it, we refer 
to the generalized Gauss map, discussed in part B above. We say that 
the Gauss map is degenerate if the image lies in a hyperplane of 
P„-i(C). 

THEOREM 5.7. The surface defined by an entire solution of (2.5) always 
has a degenerate Gauss map. 
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For w = 3, a surface has a degenerate Gauss map if and only if it 
lies on a plane. Thus Theorem 5.7 contains the case n = 3 of The­
orem 4.3. 

We may note that the proofs of Theorems 5.6 and 5.7 contain 
implicitly the following lemma, on which they depend. 

LEMMA. A one-to-one harmonic mapping defined in the whole plane 
must be linear. 

Concerning Theorem 4.5, it turns out that not even a weak form 
will hold when the codimension is greater than 1. Namely, one can 
construct bounded solutions of (2.5) in the case w = 2, w = 4, which 
are defined in a punctured disk, and which have a nonremovable 
isolated singularity. 

On the other hand, Theorem 4.6 is true in its strongest form. If D 
is a bounded plane domain, then (2.5) has a solution for arbitrarily 
prescribed continuous boundary values if and only if D is convex. 

D. Other results. Since we have a complex structure on two-dimen­
sional surfaces, it is not surprising that Nevanlinna's theory of value 
distribution will play a role. In particular, for the case w = 3, the 
Gauss map defines a complex analytic map of the surface into the 
sphere, which may be considered simply as a meromorphic function 
on the surface. A number of applications of Nevanlinna theory to this 
case are given in Osserman [36(a)]. 

Various generalizations of Nevanlinna theory also enter in. Since 
the original surface is not necessarily simply-connected, it is natural 
to try to apply the more general value-distribution theory for arbi­
trary Riemann surfaces. For this, see Sario and Noshiro [41 ]. For 
minimal surfaces in Rn, the generalized Gauss map (5.11) is the com­
plex conjugate of an analytic curve in complex projective space. Here 
we have the Ahlfors-Weyl generalization of Nevanlinna theory, and 
it is this viewpoint which is adopted in the paper of Chern and 
Osserman [12]. 

Recent work of Beckenbach and Hutchison [3] has taken a very 
different approach. The Gauss map is not considered but the authors 
develop a new generalization of Nevanlinna theory for minimal sur­
faces themselves, considered as maps from the complex plane into Rz. 
To each point in space are associated generalizations of Nevanlinna's 
counting function and proximity function, as well as a new quantity 
called the "visibility function." This last may be interpreted as 
related to the way the surface is seen when viewed from the given 
point. The sum of these three functions describes the "total affinity" 
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of the surface to the given point. The total affinity to the point a t 
infinity is called the characteristic f unction of the surface, and is used 
to prove an analog of Nevanlinna's First Main Theorem: the total 
affinity of a meromorphic minimal surface to an arbitrary point differs 
from the characteristic function by a bounded quantity. 

Other recent contributions to the theory of minimal surfaces, con­
sidered as complex analytic maps of the plane onto a surface in Rn, 
have been made by Dinghas [16]. He obtains, in particular, the fol­
lowing analog of the Schwarz-Pick lemma. Let D be the unit disk in 
R2 and x(£) : D—>Rn a minimal surface lying in the unit ball B in Rn. 
Suppose this surface satisfies the condition that for some constant 
c < l , the projection of the radius vector x(u) into the normal space 
a t the point p=x(u) is always bounded by c. Let [x, y]n denote the 
distance between the points x and y with respect to the hyperbolic 
metric in the unit ball of Rn. Then for all points fi, fa in D, we have 

[*Û-I),*U"I)]« =§ i h i f t W r ^ i » ; 
Finally, we mention the recent discovery of a number of remarkable 

surfaces in Rz by A. H. Schoen. These are infinite periodic minimal 
surfaces with no self-intersections. Among them is a surface contain­
ing no straight lines built out of an infinite number of congruent 
curvilinear hexagons whose sides form a family of curves which are 
almost, but not exactly, circular helices. This surface is associate (in 
the sense described in part A of this section) to a classical surface of 
Schwarz. A model has been constructed by Schoen, and a photograph 
appears in Osserman [36(c)]. Schoen's results, including some joint 
work with H. B. Lawson, have not yet been written up for publica­
tion, but a number of abstracts have appeared in the Notices of the 
American Mathematical Society [42]. 

6. Minimal cones. Let Fix1, • • • , xn) be a smooth function defined 
in some domain in Rn. Let us use the notation 

F{ = dF/dXi 
so that 

VF=(Fu---,Fn). 

By the implicit function theorem, the equation 

(6.1) F(xly • • • , Xn) = c 

can be solved for one of the coordinates in terms of the other n—1 
coordinates in some neighborhood of any point satisfying this equa-
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tion at which VF?*0. This means that the nonsingular points of each 
level set form a hypersurface in Rn. 

LEMMA 6.1. At each point where VF^O, the hypersurface (6.1) 
through that point has mean curvature h given by 

(6.2) \h\ = ^ _ ( è ^ i F t , . ^ \VF\*±F\ 

REMARKS. 1. Since the level set (6.1) has no intrinsic orientation, 
the sign of h depends on an arbitrary choice of unit normal. Only the 
absolute value of h is uniquely determined. 

2. Dombrowskii [17] has studied in detail the problem of obtaining 
explicit expressions for the basic geometric entities associated with a 
submanifold of a Riemannian manifold, when that submanifold is 
defined implicitly by setting a number of functions equal to con­
stants. Equation (6.2) is contained as a special case of one of his 
formulas. 

PROOF. By hypothesis, some F ^ O . Say Fn?£0. Then equation 
(6.1) may be solved in the form 

00n = f(*l, ' * * , * n - l ) . 

Using the notation fi = df/dxi, we have from 

F(XU • • • , tf„_i, f(xX, • • • , ffn_i)) S C 

that 

Fi + Fnfi = 0, i = 1, • - - , » - 1 

and 

Fij + Finfj + Fnjfi + Fnnfifj + FJy S 0, ij = 1, • • • , » - 1. 

From (3.6) and (3.7), we find g = | VF\ */Fl and 

gii = ôij - FiFj/\ VF\\ i,j = 1, • • • , n - 1. 

Substituting into (3.13) yields an expression which reduces to (6.2). 

COROLLARY. The level set (6.1) is a minimal surface if and only if F 
satisfies the equation 

(6.3) AF= 2 > < * W | v^l2-

A class of minimal hypersurfaces which have been most intensively 
studied has been the minimal cones. A cone in Rn with vertex a t the 
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origin is a union of rays through the origin, and is uniquely deter­
mined by its intersection with the unit sphere 5n~1. I t is easy to verify 
that a cone will be a minimal hypersurface in Rn if and only if its 
intersection with 5 n~ 1 is a minimal hypersurface of 5n~1. (This is 
clear using the fact that for a manifold lying on Sn"1

t its mean curva­
ture vector relative to S"*1 is simply the projection on the tangent 
space to 5n~"1 of its mean curvature vector relative to Rn.) Thus the 
theory of minimal cones in Rn is equivalent to the theory of minimal 
submanifolds of S71"1. We shall use this equivalence freely in the 
discussion below. 

A large part of the impetus for the study of minimal cones comes 
from the measure-theoretic approach to minimal varieties, where they 
play a major role. One of the chief problems is to find conditions 
under which a minimal cone has no singularity a t the origin; i.e., the 
cone is in fact a linear space. At the other extreme, one may ask just 
how complicated a minimal cone can be. We start by looking at the 
situation in low dimensions. 

First, we note tha t the reason minimal cones were not considered 
classically is that in R* the only minimal cones are planes through the 
origin. Namely, a cone in R* has Gauss curvature identically zero, 
and if its mean curvature is also zero, then it must be a plane. 

In JR4, there are nontrivial minimal cones. For example, the equation 

2 2 2 2 

(6.4) xi + x2 — #3 ~ %A = 0 

defines a minimal cone, as one verifies immediately from equation 
(6.3). Its intersection with S3 has the topological type of a torus, and 
in fact is isometric to a square in R2 with opposite sides identified, 
as one sees from the explicit mapping 

1 1 1 1 
X\ = —= cos «1, #2 = —= sin ui, xz = —= cos Uz, #4 = —= sin w2, 

\/2 y/2 \/2 y/2 
0 ^ ux ^ 2TT, 0 ^ « 2 g 2TT. 

This is the so-called Clifford torus. For a long time, it defined the only 
known nontrivial minimal cone in RA. Then the following results 
were obtained. 

THEOREM 6.1 (ALMGREN [2(a)]). If a minimal cone in R* intersects 
5 s in a surface which is topologically a 2-sphere, then the cone must be 
a hyperplane. 

Thus, a nontrivial minimal cone in R4 cannot be "near" a hyper­
plane, but must be reasonably complicated. 
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THEOREM 6.2 (LAWSON [30(a), (e), (f)]). For every positive integer g, 
there exists a minimal cone in RA whose intersection with 5 s is a compact 
surface of genus g. 

Thus there exist minimal cones in RA of arbitrarily complicated type. 
Lawson's proof depends on a geometric construction, and it has not 

yet been possible to find explicit equations for the surfaces of higher 
genus. 

In higher dimensions, a large number of new examples of minimal 
cones was found by Hsiang [26(b)], using Lie group methods. He 
also considers the problem of finding algebraic minimal cones, ob­
tained by setting a homogeneous polynomial equal to zero. For quad­
ratic polynomials, there were the known examples, 

2 2 2 2 

(6.5) q(xi + • • • + Xp+J — p(xP+2 + • • • + %p+q+2) = 0, 
p ^ l , q^l, p + q+2 = n, 

generalizing (6.4). Tha t these define minimal cones is again a direct 
consequence of equation (6.3). The intersection of (6.5) with the 
sphere 5 n _ 1 is a compact surface homeomorphic to SpXSq. Hsiang 
showed that these are in fact the only algebraic minimal cones of 
degree 2. 

The cones (6.5) also have an intrinsic geometric characterization 
among all minimal cones, which can most easily be stated in terms of 
their intersection with the sphere S""1. This intersection is a manifold 
having at each point a scalar curvature defined as an average of all 
sectional curvatures a t the point. The following result was proved 
independently by Lawson [30(b)] and by Chern, do Carmo, and 
Kobayashi [ l l ] . 

THEOREM 6.3. A minimal hyper surface of Sn~l having constant scalar 
curvature equal to (n—4)/(n — 3) must be (up to rotations of 5n_1) an 
open subset of the intersection of 5 n _ 1 with one of the cones (6.5). 

This result takes on particular interest in view of the following 
theorem of Simons [44]. 

THEOREM 6.4. If a compact minimal hypersurface of Sn"1 has scalar 
curvature K satisfying everywhere K^(n — 4)/(n — 3), then K is constant, 
and either K = (n—4)/(w — 3) or « s i . 

For a minimal hypersurface of a sphere, the scalar curvature 
always satisfies / c ^ l , and K = 1 holds only for an equatorial hyper-
sphere; i.e., the intersection of the sphere with a hyperplane through 
the origin. Thus, combining Theorems 6.3 and 6.4 yields 
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COROLLARY. If the scalar curvature nof a compact minimal hypersur­
face M of Sn~l lies in the interval 

(n - 4)/(» - 3) S K g 1, 

then M is the intersection of Sn~l either with a hyper plane or {up to a 
rotation) with one of the cones (6.5). 

In particular, a compact minimal hypersurface of Sn"1 cannot have 
constant scalar curvature lying in the open interval {n—4)/{n~3) 
<K< 1. I t would be interesting to know what values of K can actually 
occur as the constant scalar curvature of compact minimal hypersur-
faces. In the case w = 4, a hypersurface of S3 is a two-dimensional 
surface, the scalar curvature reduces to the Gauss curvature, and we 
have the following strong result. 

THEOREM 6.5 (LAWSON [30(b)]). If a minimal surface M in Sz has 
constant Gauss curvature K, then either K = 1 and M lies on an equa­
torial sphere or else K = 0 and M lies on the Clifford torus. 

For further results in this direction, see Otsuki [37]. 
Returning to Simon's result, Theorem 6.4, we note that, like The­

orem 6.1, it may be interpreted as saying that if a compact minimal 
hypersurface is in a certain sense close to being an equatorial sphere, 
then it must in fact be one. In Theorem 6.1, for the sphere 5 s , it was 
sufficient to assume that the hypersurface was topologically a sphere. 
I t is not known whether the same result holds in higher dimensions. 
Simons' condition is that the scalar curvature of the hypersurface be 
sufficiently close to that of an equatorial sphere. 

Still a third theorem of this type is due to de Giorgi [13]. 

THEOREM 6.6. A compact minimal hypersurface of a sphere whose 
normals all lie in an open hemisphere must be an equatorial hyper sphere. 

REMARKS. 1. If we consider the cone over the given hypersurface 
of the sphere, it will have the same set of normals. The condition that 
the normals lie in an open hemisphere is equivalent to assuming that 
the cone may be represented in nonparametric form under a suitable 
rotation of coordinates. The conclusion is that the cone is a hyper-
plane. This is the form in which de Giorgi stated and applied the 
theorem. 

2. The above form of the theorem is due to Simons [44] who gave 
a different proof than de Giorgi, and generalized it to compact min­
imal surfaces of higher codimension in the sphere. Still another proof 
was given by Reilly [39], who further sharpened Simons' results. He 
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showed in particular that if a compact minimal submanifold of 5n""x 

has the property that its normal space at each point makes an angle 
of less than cos""1 V f with a fixed space of the same dimension, then 
it must be an equatorial submanifold; i.e., the intersection of 5n~1 

with a linear subspace of Rn. 
3. The above results may be viewed as statements about the Gauss 

map of compact minimal submanifolds of a sphere. They appear as 
the natural analog of Theorem 5.2 on the Gauss map of complete 
minimal surfaces in Euclidean space. In both cases, the conclusion is 
that if the Gauss map is sufficiently restricted, then it must be constant. 

We turn finally to another important characterization of hyper-
planes among minimal cones. 

THEOREM 6.7 (SIMONS [44]). Let M be a minimal cone in Rn whose 
intersection with Sn~l is a compact hypersurface of 5W~X. If n^7} then 
either M is a hyperplane or else there exists a variation of the part of M 
inside 5W~1, keeping the boundary fixed, which decreases the (w —1)-
dimensional volume. 

This result is one of the major breakthroughs in Simons' paper. 
Combined with earlier work of Fleming, de Giorgi, and Almgren, it 
settled two major questions. One is the regularity of minimal hyper-
surfaces in jRn, for » ^ 7 , which solve Plateau's problem. The other is 
Bernstein's Theorem (Theorem 4.3 above). 

Simons' proof depends on a close analysis of the formula for the 
second variation, and on an important formula which he derives for 
the Laplacian of the second fundamental form of a minimal variety. 
Simons further showed that the value n = 7 was the best possible. 
Namely, the minimal cone (6.S) with p = q = 3 in Rs is in fact stable 
relative to its intersection with S7; i.e., every variation of the part 
inside S7, keeping the boundary fixed, initially increases volume. 

The question remained whether this example of Simons actually 
provided an absolute minimum of volume for the given boundary. 
This question was answered in the affirmative by Bombieri, de Giorgi, 
and Giusti [7]. This provided an example in R* where the solution to 
the Plateau problem is not everywhere regular, and it further pro­
vided the impetus for the authors' result, Theorem 4.4 above, settling 
the Bernstein problem in all dimensions. 

Thus the study of minimal cones has led to the solution of two of the 
major open problems concerning minimal varieties in Euclidean space. 
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