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Let K be a field of characteristic (50, to exclude trivial cases) and
let G be a finite goup. A KG-module M is a finite dimensional K-vec-
tor space, on which G acts K-linearly from the left.

The Green ring a(G) of G(w.r.t. K) is the free abelian group,
spanned by the isomorphism classes of indecomposable KG-modules,
with the multiplication induced from the tensor product @ g of KG-
modules (see [4]).

If UG one has a restriction map a(G)—a(U), induced from re-
stricting the action of G on a KG-module M to U, thus getting a K U-
module M I v. Let U be a family of subgroups of G. An exact sequence

E:0-M >M->M'—>0
is said to be U-split, if
Elg:0 M |lv>M|v—>M"|v—0

is a split exact sequence of K U-modules for any UEU.

For any U-split exact sequence E of KG-modules define xg=M
— M’'—M" to be its Euler characteristic in a(G). Write 4(G, 1) for
the linear span of the elements xzEa(G), where E runs through all
U-split exact sequences of KG-modules. 7(G, 1) is an ideal in a(G)
and a(G, ) =a(G)/i(G, 1) the Grothendieck ring of G relative to U

(see 1], [6]).

LeMMA 1. Let Uy, U be two famsilies of subgroups of G. Then the
multiplication map a(G) Xa(G)—a(G) sends i(G, W) X#(G, Uz) into
(G, W,\Jy).

Proor. If E;: 0oM{ —>M;—M;'—0 is exact and U;-split, then the
tensor product of these two complexes E;, E; is exact and U;\Ull,-
split, therefore xg.@r, = x5, x£8,E%(G, U;\Is).

An KG-module M is U-projective, if M is a direct summand in
@uven (M|y)U¢ (see [3]), where for a KU-module N we write
NU-¢@ for the induced KG-module KG ®xy N.

Write k(G, W) for the linear span of the U-projective modules in
a(G). The canonical epimorphism a(G)—»a(G, 1) induces a map
k: B(G, U)—a(G, 1), which has also been called the Cartan map (see

1], 6], [7D).
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THEOREM 1. The Cartan map x: k(G, W)—a(G, 1) is monic and its
cokernel is a p-power-torsion-module.

CoOROLLARY 1. All torsion in a(G, 0) (if there is any) is p-power-
torsion.

Proor. If Tor(a(G, U)) =T is the torsion submodule of a(G, 1),
then TNk (E(G, 1)) =0 because « is injective and (G, 1) Ca(G) tor-
sion free. Thus T maps injectively into cokernel k. Now define
Bu={v=G|v,AV, V/V, cyclic and V,CU for some UEU}, V,
the p-Sylow subgroup of V. For VE 3l therestriction map a(G)—a(V)
factors over a(G, 1).

THEOREM 2. The kernel of the product of the restriction maps:

oG, ) — I a(n)
vesl
is exactly Tor(a(G, 1)).

CoOROLLARY 2. If G is a p-group, then the product of the restriction
maps a(G, U)— X_veu a(U) is exactly Tor(a(G, 11)).

These results generalize some part of the more complete results,
obtained in a more special case, in [8, Theorems 4, 5, 6].

CoROLLARY 3. (a) If M is U-projective, then there exists a number n
and KV-modules My(V), My(V) (VESN) with

MOM® ---d©Md & M,(V)7?6=2 @ MyV)'6.
(n-times) vesu vesu

(b) If M, M, are two U-projective KG-modules, then M1==2M, if and
only if My|v=M,|v for all VESU.

REMARK 1. One can also prove Corollary 3 more directly with an
induction argument, using Brauer’s theory of modular characters
u= {E }) for the start of the induction and Green’s Transfer theorem
(see [5]) for the induction step.

REMARK 2. Corollary 3, (b) implies easily Theorem 3.8 in [7].

REMARK 3. If VEJU, one can find two U-projective KG-modules
M,, M, with MIIHE’ley for any H=G, which does not contain
any conjugate of V, but MIIVSF"Mgl v and a fortiori My5¢M,. There-
fore—up to conjugation—the maximal elements in 811 is the smallest
(i-e. best) possible family of subgroups in G, for which Corollary 3—
and thus also Theorem 2—can hold.

REMARK 4. The image of a(G, 1) in [[vesu a(V) is exactly the
image of a(G) in Y_yegu a(V) and this is to some extent described
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in [2]. It seems that in this rather general situation not much more
can be done. For more precise information in some special cases
see [7], [8].

Theorems 1 and 2 are easy consequences of the following

TreoreM 3. With U= {V=G|V,SG, V/V, hyperelementary,
VoS U for some U Eu} there exist a p-power p™ and integral numbers
ny(VEDN) with pm-1= Y veguny-K[G/V] in a(G, 1) with K[G/V]
the KG-module spanned by the cosets G/ V.

Using Corollary 3 for 1= {G} Theorem 3 reduces itself easily to
the case G,JG, G, elementary abelian and U =9(G,), the family of
maximal subgroups in G,. In this special case one can explictly con-
struct the numbers p*, ny(VEHU), using constructions based on
Lemma 1.

Theorem 3 implies also a statement similar to Corollary 3: For any
U-projective KG-module M there exists a p-power ™ and K V-modules
My(V), Mx(V) (VEDU) with

M®--- M D M1(V)V_)GE D Mz(V)V—)G.
vedu vedu
(p" times)

One may also assume either M;(V)=0 or My(V)=0 for any VEHU
(the same remark holds for Corollary 3).

REMARK 5. If R is any commutative ring, one may as well form the
relative Grothendieck ring a(G, U; R), spanned by the isomorphism
classes of finitely generated RG-modules, modulo the span of the
Euler characteristics of U-split exact sequences of RG-modules. One
has also the notion of U-projective RG-modules [3] and a Cartan
map «: k(G, U; R)—a(G, U; R). One can still prove that the kernel
of k is a torsion submodule of 2(G, U; R), probably it is even injec-
tive, but the cokernel is no longer a torsion module. (Counterexample:
G cyclic of order p, U={E}, R=2,) But the following form of
Theorem 2 may still be true:

ConjecTUre. With Gzll={V <G|INIV, V/N cyclic, NCU for
some UEWU and N a p-group for some p with pR=R, i.e. p not a unit
in R} the map

oG, ;R — [ a(v,VNU;R)

ve€rU
has torsion kernel with

vNu={vNgUgtlge G Ueul.
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For U= {E} thisis a Corollary to the results of Swan [9], for I= {G}
this is the principal result in [2].

REMARK 6. There is another perhaps interesting application of the
construction, used in the proof of Lemma 1: Let R be a commutative
noetherian ring, whose maximal ideal spectrum is of dimension S#.
Let G be a finite group and consider the Grothendieck ring a(G; R)
=a(G, {G}; R) in the above notation. For any maximal ideal m one
has a homomorphism a(G; R)—a(G, Rm) with kernel say #(G; R, m).
Then Nmi(G; R, m)=1(G, R) (where m runs through all maximal
ideals in R) is nilpotent of order n+41, i.e. 2(G, R)**+1=0.

Especially if R is a Dedekind ring in an algebraic number field,
1(G, R) is known to be the torsion submodule Tor(a(G; R)) of a(G; R).
Thus x-y=0 in a(G; R) for any two torsion elements x, yEa(G; R).
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