ON RELATIVE GROTHENDIECK RINGS

BY ANDREAS DRESS

Communicated by Hyman Bass, April 21, 1969

Let K be a field of characteristic $p(\neq 0)$, to exclude trivial cases) and let G be a finite goup. A KG-module M is a finite dimensional K-vector space, on which G acts K-linearly from the left.

The Green ring a(G) of G(w.r.t. K) is the free abelian group, spanned by the isomorphism classes of indecomposable KG-modules, with the multiplication induced from the tensor product \bigoplus_{K} of KG-modules (see [4]).

If $U \leq G$ one has a restriction map $a(G) \rightarrow a(U)$, induced from restricting the action of G on a KG-module M to U, thus getting a KU-module $M|_{U}$. Let \mathfrak{U} be a family of subgroups of G. An exact sequence

$$E: 0 \to M' \to M \to M'' \to 0$$

is said to be U-split, if

$$E|_{U}\colon 0\to M'|_{U}\to M|_{U}\to M''|_{U}\to 0$$

is a split exact sequence of KU-modules for any $U \in \mathfrak{U}$.

For any \mathbb{I} -split exact sequence E of KG-modules define $\chi_E = M - M' - M''$ to be its Euler characteristic in a(G). Write $i(G, \mathbb{I})$ for the linear span of the elements $\chi_E \in a(G)$, where E runs through all \mathbb{I} -split exact sequences of KG-modules. $i(G, \mathbb{I})$ is an ideal in a(G) and $a(G, \mathbb{I}) = a(G)/i(G, \mathbb{I})$ the Grothendieck ring of G relative to \mathbb{I} (see [1], [6]).

LEMMA 1. Let \mathfrak{U}_1 , \mathfrak{U}_2 be two families of subgroups of G. Then the multiplication map $a(G) \times a(G) \rightarrow a(G)$ sends $i(G, \mathfrak{U}_1) \times i(G, \mathfrak{U}_2)$ into $i(G, \mathfrak{U}_1 \cup \mathfrak{U}_2)$.

PROOF. If $E_i: 0 \to M_i' \to M_i \to M_i'' \to 0$ is exact and \mathfrak{U}_i -split, then the tensor product of these two complexes E_1 , E_2 is exact and $\mathfrak{U}_1 \cup \mathfrak{U}_2$ -split, therefore $\chi_{E_i \otimes E_2} = \chi_{E_i} \cdot \chi_{E_2} \in i(G, \mathfrak{U}_1 \cup \mathfrak{U}_2)$.

An KG-module M is \mathfrak{U} -projective, if M is a direct summand in $\bigoplus_{v \in \mathfrak{U}} (M|_v)^{v \to \sigma}$ (see [3]), where for a KU-module N we write $N^{v \to \sigma}$ for the induced KG-module $KG \otimes_{KV} N$.

Write $k(G, \mathbb{U})$ for the linear span of the \mathbb{U} -projective modules in a(G). The canonical epimorphism $a(G) \rightarrow a(G, \mathbb{U})$ induces a map $\kappa: k(G, \mathbb{U}) \rightarrow a(G, \mathbb{U})$, which has also been called the Cartan map (see [1], [6], [7]).

THEOREM 1. The Cartan map $\kappa: k(G, \mathfrak{U}) \rightarrow a(G, \mathfrak{U})$ is monic and its cokernel is a p-power-torsion-module.

COROLLARY 1. All torsion in $a(G, \mathfrak{U})$ (if there is any) is p-power-torsion.

PROOF. If $\operatorname{Tor}(a(G,\ \mathfrak{U}))=T$ is the torsion submodule of $a(G,\ \mathfrak{U})$, then $T\cap \kappa(k(G,\ \mathfrak{U}))=0$ because κ is injective and $k(G,\ \mathfrak{U})\subseteq a(G)$ torsion free. Thus T maps injectively into cokernel κ . Now define $\mathfrak{Z}\mathfrak{U}=\{\ V\le G\ |\ V_p\subseteq V,\ V/V_p\ \text{cyclic}\ \text{and}\ V_p\subseteq U\ \text{for some}\ U\in\mathfrak{U}\},\ V_p$ the p-Sylow subgroup of V. For $V\in\mathfrak{Z}\mathfrak{U}$ the restriction map $a(G)\to a(V)$ factors over $a(G,\ \mathfrak{U})$.

THEOREM 2. The kernel of the product of the restriction maps:

$$a(G, \mathfrak{U}) \to \prod_{V \in \mathfrak{ZU}} a(V)$$

is exactly $Tor(a(G, \mathfrak{U}))$.

COROLLARY 2. If G is a p-group, then the product of the restriction maps $a(G, \mathfrak{U}) \rightarrow \sum_{U \in \mathfrak{U}} a(U)$ is exactly $\operatorname{Tor}(a(G, \mathfrak{U}))$.

These results generalize some part of the more complete results, obtained in a more special case, in [8, Theorems 4, 5, 6].

COROLLARY 3. (a) If M is \mathfrak{U} -projective, then there exists a number n and KV-modules $M_1(V)$, $M_2(V)$ ($V \in \mathfrak{ZU}$) with

$$M \oplus M \oplus \cdots \oplus M \oplus \oplus M_1(V)^{v \to g} \cong \oplus M_2(V)^{v \to g}.$$

$$(n-times) \qquad \qquad v \in \mathfrak{Z}\mathfrak{u} \qquad \qquad v \in \mathfrak{Z}\mathfrak{u}$$

(b) If M_1 , M_2 are two \mathfrak{U} -projective KG-modules, then $M_1 \cong M_2$ if and only if $M_1|_{V} \cong M_2|_{V}$ for all $V \in \mathfrak{ZU}$.

REMARK 1. One can also prove Corollary 3 more directly with an induction argument, using Brauer's theory of modular characters $(\mathfrak{U} = \{E\})$ for the start of the induction and Green's Transfer theorem (see [5]) for the induction step.

REMARK 2. Corollary 3, (b) implies easily Theorem 3.8 in [7].

REMARK 3. If $V \in \mathfrak{ZU}$, one can find two U-projective KG-modules M_1 , M_2 with $M_1|_H \cong M_2|_H$ for any $H \subseteq G$, which does not contain any conjugate of V, but $M_1|_V \not\cong M_2|_V$ and a fortiori $M_1 \not\cong M_2$. Therefore—up to conjugation—the maximal elements in \mathfrak{ZU} is the smallest (i.e. best) possible family of subgroups in G, for which Corollary 3—and thus also Theorem 2—can hold.

REMARK 4. The image of $a(G, \mathbb{1})$ in $\prod_{V \in \mathfrak{Z} \mathbb{1}} a(V)$ is exactly the image of a(G) in $\sum_{V \in \mathfrak{Z} \mathbb{1}} a(V)$ and this is to some extent described

in [2]. It seems that in this rather general situation not much more can be done. For more precise information in some special cases see [7], [8].

Theorems 1 and 2 are easy consequences of the following

THEOREM 3. With $\mathfrak{SU} = \{ V \leq G | V_p \leq G, V/V_p \text{ hyperelementary, } V_p \subseteq U \text{ for some } U \in \mathfrak{U} \}$ there exist a p-power p^n and integral numbers $n_V(V \in \mathfrak{SU})$ with $p^n \cdot 1 = \sum_{v \in \mathfrak{SU}} n_v \cdot K[G/V]$ in $a(G, \mathfrak{U})$ with K[G/V] the KG-module spanned by the cosets G/V.

Using Corollary 3 for $\mathfrak{U} = \{G\}$ Theorem 3 reduces itself easily to the case $G_p \subseteq G$, G_p elementary abelian and $\mathfrak{U} = \mathfrak{M}(G_p)$, the family of maximal subgroups in G_p . In this special case one can explictly construct the numbers p^n , $n_V(V \subset \mathfrak{FU})$, using constructions based on Lemma 1.

Theorem 3 implies also a statement similar to Corollary 3: For any \mathfrak{U} -projective KG-module M there exists a p-power p^n and KV-modules $M_1(V)$, $M_2(V)$ ($V \in \mathfrak{SU}$) with

$$M \oplus \cdots \oplus M \oplus \bigoplus_{V \in \mathfrak{Su}} M_1(V)^{V \to G} \cong \bigoplus_{V \in \mathfrak{Su}} M_2(V)^{V \to G}.$$

$$(p^n \ times)$$

One may also assume either $M_1(V) = 0$ or $M_2(V) = 0$ for any $V \in \mathfrak{SU}$ (the same remark holds for Corollary 3).

REMARK 5. If R is any commutative ring, one may as well form the relative Grothendieck ring $a(G, \mathfrak{U}; R)$, spanned by the isomorphism classes of finitely generated RG-modules, modulo the span of the Euler characteristics of \mathfrak{U} -split exact sequences of RG-modules. One has also the notion of \mathfrak{U} -projective RG-modules [3] and a Cartan map $\kappa: k(G, \mathfrak{U}; R) \rightarrow a(G, \mathfrak{U}; R)$. One can still prove that the kernel of κ is a torsion submodule of $k(G, \mathfrak{U}; R)$, probably it is even injective, but the cokernel is no longer a torsion module. (Counterexample: G cyclic of order p, $\mathfrak{U} = \{E\}$, $R = \hat{\mathbf{Z}}_p$.) But the following form of Theorem 2 may still be true:

Conjecture. With $\mathfrak{C}_R\mathfrak{U} = \{ V \leq G | \exists N \leq V, \ V/N \text{ cyclic, } N \subseteq U \text{ for some } U \in \mathfrak{U} \text{ and } N \text{ a } p\text{-group for some } p \text{ with } pR \neq R, \text{ i.e. } p \text{ not a unit in } R \} \text{ the map}$

$$a(G, \mathfrak{U}; R) \to \prod_{V \in \mathfrak{C}_R \mathfrak{U}} a(V, V \cap \mathfrak{U}; R)$$

has torsion kernel with

$$V \cap \mathfrak{U} = \{V \cap gUg^{-1} | g \in G, U \in \mathfrak{U}\}.$$

For $\mathfrak{U} = \{E\}$ this is a Corollary to the results of Swan [9], for $\mathfrak{U} = \{G\}$ this is the principal result in [2].

REMARK 6. There is another perhaps interesting application of the construction, used in the proof of Lemma 1: Let R be a commutative noetherian ring, whose maximal ideal spectrum is of dimension $\leq n$. Let G be a finite group and consider the Grothendieck ring $a(G; R) = a(G, \{G\}; R)$ in the above notation. For any maximal ideal m one has a homomorphism $a(G; R) \rightarrow a(G, R_m)$ with kernel say i(G; R, m). Then $\bigcap_m i(G; R, m) = i(G, R)$ (where m runs through all maximal ideals in R) is nilpotent of order n+1, i.e. $i(G, R)^{n+1} = 0$.

Especially if R is a Dedekind ring in an algebraic number field, i(G, R) is known to be the torsion submodule Tor(a(G; R)) of a(G; R). Thus $x \cdot y = 0$ in a(G; R) for any two torsion elements $x, y \in a(G; R)$.

REFERENCES

- 1. S. B. Conlon, Decompositions induced from the Burnside algebra, J. Algebra 10 (1968), 102-122.
- 2. A. Dress, On integral representations, Bull. Amer. Math. Soc. 75 (1969), 1031-1034.
 - 3. ——, Vertices of integral representations, Math. Z. (to appear).
- 4. J. A. Green, The modular representation algebra of a finite group, Illinois J. Math. 6 (1962), 607-619.
 - 5. ——, A transfer theory for modular representations, J. Algebra 1 (1964) 73-84.
 - 6. T. Y. Lam and I. Reiner, Relative Grothendieck groups, J. Algebra (to appear).
- 7. ——, Reduction theorems for relative Grothendieck rings, Trans. Amer. Math. Soc. (to appear).
 - 8. ——, Relative Grothendieck rings, Bull. Amer. Math. Soc. 75 (1969), 496-498.
 - 9. R. G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.

FREE UNIVERSITY, BERLIN, GERMANY AND
INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540