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Let K be a field of characteristic pi^O, to exclude trivial cases) and 
let G be a finite goup. A XG-module M is a finite dimensional K-vec-
tor space, on which G acts Jf-linearly from the left. 

The Green ring a(G) of G(w.r.t. K) is the free abelian group, 
spanned by the isomorphism classes of indecomposable i£G-modules, 
with the multiplication induced from the tensor product © x of KG-
modules (see [4]). 

If U^G one has a restriction map a(G)—*a(U), induced from re­
stricting the action of G on a 2£G-module M to U, thus getting &KU-
module M\ u. Let U be a family of subgroups of G. An exact sequence 

E: 0 - • M' -> M ~> M" -> 0 

is said to be U-split, if 

E \u: 0 -* M' \u -+ M \u -> M" \u -> 0 

is a split exact sequence of i£Z7-modules for any £/£U. 
For any U-split exact sequence E of XG-modules define XB = M 

— M' — M" to be its Euler characteristic in a(G). Write i(G, U) for 
the linear span of the elements xsE:a(G), where E runs through all 
U-split exact sequences of üTG-modules. i(Gy U) is an ideal in a(G) 
and a(G, U) =a(G)/i(G, U) the Grothendieck ring of G relative to U 
(see [1], [6]). 

LEMMA 1. Let Ui, U2 be two families of subgroups of G. Then the 
multiplication map a(G)Xa(G)—>a(G) sends i(G, Ui)X*(G, U2) into 
i(G, U1WU2). 

PROOF. If E<: 0-+M/->Mt—»Af,"->0 is exact and U»-split, then the 
tensor product of these two complexes Eu E2 is exact and U1VJU2-
split, therefore x^®^2 = X^-X^iGi(G ;, U1WU2). 

An 2£G-module M is U-projective, if M is a direct summand in 
©w=u (M\u)u~*° (see [3]), where for a 2£[/-module iV we write 

Nu->° for the induced XG-module KG ®KU N. 
Write k(Gt U) for the linear span of the U-projective modules in 

a(G). The canonical epimorphism a{G)-»a(G, U) induces a map 
K: k(G, U)—>a(G, U), which has also been called the Car tan map (see 

[1]. w. [7]). 
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THEOREM 1. The Cartan map K: k(G, U)-^a(G, Ü) is monte and its 
cokernel is a p-power-torsion-module. 

COROLLARY 1. All torsion in a(G, U) (if there is any) is p-power-
torsion. 

PROOF. If Tor(a(G, VL)) = T is the torsion submodule of a(G, U), 
then Tr\K(k(G, U)) = 0 because K is injective and k(G, U)Qa(G) tor­
sion free. Thus T maps injectively into cokernel K. NOW define 
3 U = { F ^ G | VP<V, V/VP cyclic and VPQU for some *7GU}, Vp 

the £-Sylow subgroup of V. For F£ ,3U the restriction map a (G)—>a(V) 
factors over a(G, U). 

THEOREM 2. The kernel of the product of the restriction maps: 

<G, U) -> II <V) 
VeSVL 

is exactly Tor(a(G, U)). 
COROLLARY 2. If G is a p-group, then the product of the restriction 

maps a(G, U)—»2t/eu a(U) is exactly Tor(a(G, U)). 

These results generalize some part of the more complete results, 
obtained in a more special case, in [8, Theorems 4, 5, 6]. 

COROLLARY 3. (a) If M is U-projective, then there exists a number n 
and KV-modules Mi(V), M2(V) (VE3U) with 

M e M e . . . e M e e M^V)^0 ^ e M2(V)V*°. 

(n-times) vesvi vesn 

(b) If Mu M2 are two U-projective KG-modules, then M\=M2 if and 
only if M^v^M^v for all VG8VL. 

REMARK 1. One can also prove Corollary 3 more directly with an 
induction argument, using Brauer's theory of modular characters 
(U = {E} ) for the start of the induction and Green's Transfer theorem 
(see [5]) for the induction step. 

REMARK 2. Corollary 3, (b) implies easily Theorem 3.8 in [7]. 
REMARK 3. If F E ^ t t , one can find two U-projective J£G-modules 

Mu M2 with MI\H=M2\H for any H^G, which does not contain 
any conjugate of V, but Mi\v^M2\ v and a fortiori Mi^M2. There­
fore—up to conjugation—the maximal elements in 3U is the smallest 
(i.e. best) possible family of subgroups in G, for which Corollary 3— 
and thus also Theorem 2—can hold. 

REMARK 4. The image of a(G, U) in ü r e ^ u a(V) is exactly the 
image of a(G) in ^2ve3\x a(V) and this is to some extent described 
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in [2]. I t seems that in this rather general situation not much more 
can be done. For more precise information in some special cases 
see [7], [8]. 

Theorems 1 and 2 are easy consequences of the following 

THEOREM 3. With $VL={VSG\VP<G1 V/Vp hyper elementary, 
VPQ V for some Z7£tt} there exist a p-power pn and integral numbers 
nv(VG§U) withpn-l=J2veç>VLnv'K[G/V] in a(G, U) with K[G/V] 
the KG-module spanned by the cosets G/ V. 

Using Corollary 3 for U= {G} Theorem 3 reduces itself easily to 
the case Gp^G, Gv elementary abelian and U = 9W(G>), the family of 
maximal subgroups in Gp. In this special case one can explictly con­
struct the numbers pn, W F ( F £ | > U ) , using constructions based on 
Lemma 1. 

Theorem 3 implies also a statement similar to Corollary 3: For any 
U-projective i£G-module M there exists a £-power pn and i£F-modules 
M^V), M2(V) (Vem) with 

M e •. - e M e e Mi(yy*G s* e M2(V)V^G. 

(pn times) 

One may also assume either Mi(V) = 0 or M2(V) = 0 for any F G § U 
(the same remark holds for Corollary 3). 

REMARK 5. If R is any commutative ring, one may as well form the 
relative Grothendieck ring a(G, II; R), spanned by the isomorphism 
classes of finitely generated 2?G-modules, modulo the span of the 
Euler characteristics of It-split exact sequences of i£G-modules. One 
has also the notion of U-projective i?G-modules [3] and a Cartan 
map K: k(G, U; R)^>a{G, U; R). One can still prove that the kernel 
of K is a torsion submodule of k(G, U; R), probably it is even injec-
tive, but the cokernel is no longer a torsion module. (Counterexample: 
G cyclic of order p, U = { £ } , R — Zp.) But the following form of 
Theorem 2 may still be true: 

CONJECTURE. With S*U= { V<G\lN<Vy V/N cyclic, NQU for 
some Z7£U and N a p-group for some p with pR^Rt i.e. p not a unit 
in R} the map 

a ( G , U ; * ) - > I I a(V,Vr\U)R) 
F G S B U 

has torsion kernel with 

F H U = IvngUg-^gGG.UeU}. 
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For U = {E} this is a Corollary to the results of Swan [<)], for U = {G} 
this is the principal result in [2]. 

REMARK 6. There is another perhaps interesting application of the 
construction, used in the proof of Lemma 1 : Let R be a commutative 
noetherian ring, whose maximal ideal spectrum is of dimension ^n. 
Let G be a finite group and consider the Grothendieck ring a(G; R) 
= a(G, {G} ; R) in the above notation. For any maximal ideal m one 
has a homomorphism a(G; R)—*a(G, Rm) with kernel say i(G\ R, m). 
Then f)mi(G; R, m)=i(G, R) (where m runs through all maximal 
ideals in R) is nilpotent of order n + 1, i.e. i(G> R)n+1 = 0. 

Especially if R is a Dedekind ring in an algebraic number field, 
i(G, R) is known to be the torsion submodule Tor(a(G; R)) of a(G; R). 
Thus x-y = 0 in a(G; R) for any two torsion elements x, yÇîa(G\ R). 
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