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1. Introduction. The results of [2] on the orbit structure of a 
complex reductive Lie algebra, under the adjoint group, are general­
ized to the analogue associated with a symmetric space. Notwith­
standing some new complications such as the nonirreducibility of the 
variety of nilpotent elements and the nonnormality of orbits of max­
imal dimension the symmetric space case seems to be the correct 
setting for the results. 

The notions of the principal TDS, principal nilpotent element, 
regular element, the finiteness of the number of nilpotent orbits and 
the orbit structure as described by the invariant polynomials and 
nilpotent orbits all go through in the general case. Also (see [3]) the 
orbits of maximal dimension can be sectioned in an as nice a manner 
as in the case of the adjoint representation (see [2 ]). 

2. Regular, semisimple and nilpotent elements. 
2.1. Let g be a complex reductive Lie algebra and let qR be a real 

form fixed throughout. Also let Q2* = f/?+Pi? be a Cartan decomposi­
tion of QR fixed throughout. Thus exp ad fR operating on QR is a 
maximal compact subgroup of the adjoint group of $R and if 

is the linear direct sum obtained by complexifying fR and pR then the 
map 0: g—»g defined by putting 6 = 1 on f and — 1 on pf is a Lie alge­
bra automorphism of order 2. 

Now let G be the adjoint group of g and let KB be the subgroup of 
elements a (EG which commute with 0. Thus Ï and p are stable under 
the action of KB and in particular the latter defines a representation 

KB —• Aut p 

which will be of concern to us throughout. One notes of course that 
the identity component K of KB is just the subgroup of G correspond­
ing to f. 

Let aR be a maximal abelian subalgebra of pR and let a C p be its 
complexification. Let A = exp ad a and let F be the finite group of all 
elements of order 2 in A. Clearly FQKB and hence F normalizes K. 
The relation between KB and K is clarified by 

PROPOSITION 1. One has KB = FK. 
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An element #Gg is called semisimple if ad x is diagonalizable and 
is called nilpotent if # G [g, g] and ad x is nilpotent. One knows that 
any re G g may be uniquely written (Jordan decomposition) x = x9+xn 

where [x„ xn] = 0 and x8 is semisimple and xn nilpotent. In case #Gp 
it is immediate that both x8, #»Gp. Let S and 31 be respectively the 
set of all semisimple and nilpotent elements in p. One may character­
ize the elements of S by 

PROPOSITION 2. Let * G p then x& if and only if it is K (or KB) 

conjugate to an element in a. 

2.2. If ƒ is a function on p and if a^Ke then a-f is the function on 
p denned by (a-f)(x) =f(a~1-x). If S' denotes the ring of all poly­
nomial functions on p then in this way clearly S' is a Xe-module. Let 
J'=(S')Ko be the subring of K$ invariants and let / + be the ideal of 
all ƒ G J' which vanish at the origin (that is with zero as a constant 
term). The set of nilpotent elements in p is characterized by 

PROPOSITION 3. Let xGp then xGVl if and only if f(x)=*0 for all 
EJ'+. 

For any #Gp the connected components of the orbit K$-x all have 
the same dimension (written dim KB-X). An element #Gp is called 
regular in case dim K$-x}zdim K$-y for any 3>Gp- That is, in case 
dim ï*gdim P for all 3>Gp. If $ £ g is any subset $* denotes the sub­
set of all elements in $ which commute with x. Let (R be the set of all 
regular elements in p. Clearly (R and S are dense in p. 

Let r = dim a. Then if codim Ke*x = dim p—dim K$*x one can 
show that for any *Gp 

codim Ke-% = dim p* and r ^ dim p* 

where equality holds if and only if xG<R. 
2.3. Any Lie subalgebra of g which is isomorphic to the Lie algebra 

of SL(2, C) is called a TDS. A TDS u is called normal in case u is 
stable under 0 and uÇËf. It is immediate that if u is a normal TDS 
then uC\t is 1-dimensional and uP\p is 2-dimensional. An 5-triple is 
a set of 3-linear independent elements (x} e, ƒ) in g where [x, e] — 2e, 
[x>f] = —2/and [e, ƒ] =x. I t is called normal in case e, / G p and #Gf. 
I t is clear that an 5-triple spans a TDS and a normal 5-triple spans a 
normal TDS. Strengthening the Jacobson-Morosov theorem and 
Corollary 3.7 of [ l ] one has 

PROPOSITION 4. Any Op^GSl can be embedded in a normal S-triple 
(*> e» ƒ) (and hence in a normal TDS). Moreover this sets up a 1-1 corre-
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spondence between the set of all Ko-orbits in 91 — (0) and all K$-conjugacy 
classes of S-triples. 

Using the ideas of §4 in [ l ] one shows the -RVconjugacy class of a 
normal 5-triple (x, e,f) is determined by the i£$-conjugacy class of x. 
I t then follows easily that there are only a finite number of i^-orbits 
in 91. This implies that each Zariski component of 91 in p has codimen-
sion r. But more than this one has 

THEOREM 1. The set (RP\9l is open and dense in 91. Moreover (RH91 
is a single Ke-orbit. Thus (RP\9l may be characterized as the unique open 
Ke-orbit in 91 or as the unique dense orbit in 91. 

REMARK 1. Unlike the situation in [ l ] 91 is not necessarily Zariski 
irreducible. Note that Theorem 1 implies that the topological com­
ponents of (RP\9l are the same as the Zariski components of (RP\9l 
and that all have the same dimension, all are open in their closures 
and that the closures are just the Zariski components of 91. 

2.4. The elements of (R/°\9l are called principal nilpotent. A normal 
S-triple (x, e,f) is called principal if e (and hence/ , and vice versa) is 
principal nilpotent. A normal TDS u is called principal in case u 
contains a principal nilpotent element, in which case all the nonzero 
nilpotent elements in u are principal. 

COROLLARY TO THEOREM 1. Any 2 principal normal S-triples or 
principal normal TDS are Ke-conjugate. 

The principal nilpotent elements in p are related to certain nil-
potents in $R. Let GR be the subgroup of all elements a £ G which 
leave $R stable. Let £ be the set of all nilpotent elements in g and 
let £R = £r\$R. The action of G on £ is described in [l ]. With regard 
to the action of GR on £R one has 

THEOREM 2. There exists a unique dense GR orbit P in £R. Moreover 
P is open in £R. An element e£ 91 is principal nilpotent if and only if 
it is G-conjugate to an element in P. That is G ((Rn9l)P\g i ? = P . 

2.5. Let A C a ' be the set of roots (that is restricted roots in the 
usual terminology) for the action of a on g and let S C A be the set of 
simple roots relative to some lexicographical ordering. For any 
0 £ A let 8 0 £ g be the corresponding root space. 

Another characterization of principal nilpotent is given in 

THEOREM 3. LetGA be the centralizer of A in G. Then 53« es 8a = ô1 

is stable under GA and there exists a unique open dense orbit D of GA in 
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g1. An element e £ p is principal nilpotent if and only if it is G-conjugate 
to an element in D. 

2.6. Now the set (R of regular elements can be characterized in 
terms of the notion of principal nilpotent. Let # £ p be arbitrary and 
let x = x8+xn be its Jordan decomposition. Now gx« is reductive and 
g*« = f*«+p*« i s a complexified Cartan decomposition relative to a 
suitable real form of g*«. Thus the theory above applies to this case 
and in particular we can speak of the principal nilpotent elements in 
px». One notes of course that xn is a nilpotent element in p*«. 

PROPOSITION 5. Let # £ p be arbitrary. Then x is regular if and only 
if xn is principal nilpotent in pXt. 

3. The orbit structure, 
3.1. Now the ring J' = (S')Ko of polynomial K$ invariants, by 

Chevalley, is a polynomial ring in r ( = dim a) homogeneous genera­
tors Ui, • • • , ur. This defines a map 

u: p -^C 7 , 

by u(x) = (ui(x), • • • , ur(x)). Also if 0 is the set of all i£<r orbits in p 
then since u is constant on any orbit it induces a map ü: 0—>Cr. Let 
05 be the set of all orbits of semisimple elements. They are all charac­
terized as follows: 

THEOREM 4. An orbit O£0 is closed (either Zariski or in the usual 
topology) if and only if O£0£. 

Let OR be the set of all orbits of regular elements. By definition OR 
is the set of all orbits of maximal dimension (those orbits having 
codimension r). Let us and ÜR be respectively the restrictions of ü to 
05 and OR. 

THEOREM 5. The map us: 05—>Cr and üR: QR—*Cr are both bisections. 

3.2. For any £ £ 0 * let 0 a ( 8 = flJx(ö and OBQÙ^UR1®. NOW 
obviously p = U{ecr «"Kf) is a disjoint union and each w1^) is non­
empty and stable under the action of K$. As a generalization of 
Theorem 3 in [2 ] one has 

THEOREM 6. For any (•£<?" there are only a finite number of K$-orbits 
in w1^). Moreover, there is a unique orbit of maximal dimension and a 
unique orbit of minimal dimension in u~l(%). These are respectively 
OR(Ç)andOs(f;)- Moreover, OR(%) is open and dense in w~*(£) (implying 
that all Zariski components of u~l(%) have codimension r). Also Os(%) is 
irreducible and is the unique closed orbit in u~l(%). 
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Considering G-conjugacy (as far as it goes) in p instead of K$ 
conjugacy does not enlarge an orbit of regular or semisimple elements. 

THEOREM 7. Let x, y£p. Then if x is semisimple or regular x and y 
are Ko-conjugate if and only if they are G-conjugate. If x is semisimple 
we may substitute Kfor K9. 
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