ON SOME SINGULAR CONVOLUTION OPERATORS1

BY CHARLES FEFFERMAN²

Communicated by Joseph J. Kohn, February 14, 1969

In this note, we state some results on the boundedness of certain operators on $L^p(\mathbb{R}^n)$. The operators which we study are too singular to be handled by the ordinary Calderón-Zygmund techniques of [1].

Our first theorem concerns a sublinear operator g_{λ}^{*} which arises in Littlewood-Paley theory. If f is a real-valued function on R^{n} , set u(x,t) equal to the Poisson integral of f, defined on $R_{+}^{n+1} = R^{n} \times (0, \infty)$. Then for $\lambda > 1$, the g_{λ}^{*} -function on R^{n} is defined by the equation

$$g_{\lambda}^{*}(f)(x) = \left(\int_{R_{+}^{n+1}} \left(\frac{t}{\mid x-y\mid +t}\right)^{n\lambda} t^{1-n} \mid \nabla u(y,t) \mid^{2} dy dt\right)^{1/2}.$$

(∇ denotes the gradient in \mathbb{R}^{n+1} .)

It is known [4] that if $p > 2/\lambda$ then the operator $f \to g_{\lambda}^{*}(f)$ is bounded on $L^{p}(\mathbb{R}^{n})$. On the other hand, if $p < 2/\lambda$ then there are L^{p} functions f such that $g_{\lambda}^{*}(f)(x) = +\infty$ for every $x \in \mathbb{R}^{n}$. The behavior of g_{λ}^{*} on L^{p} for $p = 2/\lambda$ is more subtle, and the methods of [1] and [4] are inadequate to deal with it.

THEOREM 1. Let $1 , <math>p = 2/\lambda$. Then the operator $f \rightarrow g_{\lambda}^{*}(f)$ has weak-type (p, p), i.e.

measure(
$$\{x \in R^n \mid g_{\lambda}^*(f)(x) > \alpha\}$$
) $\leq (A/\alpha^p) ||f||_p^p$

for any $\alpha > 0$ and $f \in L^p(\mathbb{R}^n)$, and the "constant" A is independent of f and α .

This result implies the positive theorem about $p>2/\lambda$, for the case $p \le 2$, by the Marcinkiewicz interpolation theorem.

An argument almost identical to the proof of Theorem 1 gives information on fractional integration. In particular, suppose that $f \in L^p(\mathbb{R}^n)$ and $0 < \beta < 1$. Stein [5] has shown that the fractional integral $F = I^{\beta}(f)$ satisfies the smoothness condition

¹ This work was supported by the National Science Foundation.

³ I am deeply grateful to my adviser and teacher, E. M. Stein, for bringing these problems to my attention and for his many helpful suggestions and criticisms.

$$\mu_{\beta}(F) = \left(\int_{\mathbb{R}^n} \frac{|F(x) - F(x - y)|^2}{|y|^{n+2\beta}} dy\right)^{1/2} \in L^p(\mathbb{R}^n),$$

provided that $2n/(n+2\beta) < p$; and that conversely, any function $F \in L^p(\mathbb{R}^n)$ for which $\mu_{\beta}(F)$ belongs to L^p , has a fractional derivative $I^{-\beta}F$ in L^p . This result follows from the study of g_{λ}^* , since one can prove a pointwise inequality $\mu_{\beta}(f)(x) \leq C_{\beta\lambda}^*(f)(x)$, for $n(\lambda-1) > 2\beta$, $0 < \beta < 1$.

THEOREM 1'. For $1 , <math>2n/(n+2\beta) = p$, and $0 < \beta < 1$, the operator $f \rightarrow \mu_{\beta}(I^{\beta}f)$ has weak-type (p, p).

Theorem 1' is the best possible positive result for μ_{β} .

The above theorems exhibit various nonlinear operators which are bounded on some L^p spaces, but not on all. There are also some known examples of linear operators which are bounded only on some of the L^p spaces. For example, consider the operator

$$T_{a\alpha}: f \to \left(\frac{\exp[i/\mid x\mid^a]}{\mid x\mid^{n+\alpha}}\right) * f,$$

defined for $f \in C_0^\infty(R^n)^*$. The convolution makes sense if we interpret $\exp \left[i/\left|x\right|^a\right]/\left|x\right|^{n+\alpha}$ as a temperate distribution on R^n . Fix an a>0 and an $\alpha>0$. For which p does $T_{a\alpha}$ extend to a bounded linear operator on $L^p(R^n)$? If α were negative, then $k=\exp \left[i/\left|x\right|^a\right]/\left|x\right|^{n+\alpha}$ would be locally L^1 ; so if we ignore difficulties at infinity (say by cutting off k outside of |x|<1), we find that $T_{a\alpha}$ is bounded on L^p for every p $(1 \le p \le +\infty)$, if $\alpha<0$. On the other hand, by computing the Fourier transform of $\exp \left[i/\left|x\right|^a\right]/\left|x\right|^{n+\alpha}$, we can deduce that $T_{a\alpha}$ is bounded on $L^2(R^n)$ exactly when $\alpha \le (n/2)a$. (Since $T_{a\alpha}$ is defined only on $C_0^\infty(R^n)$, the statement " $T_{a\alpha}$ is bounded on L^p " means that $T_{a\alpha}$ extends to a bounded operator on L^p , or equivalently, that the a priori inequality $\|T_{a\alpha}f\|_p \le A\|f\|_p$ holds, for $f \in C_0^\infty(R^n)$.)

Applying a strong form of the Riesz-Thorin convexity theorem, we can interpolate between the L^1 inequality and the L^2 inequality, to obtain the following theorem. Let a, $\alpha > 0$, and let $\beta = (a+1)(na/2-\alpha)$ be positive. (The significance of β is that it turns out that

$$\left| \left(\frac{\exp[i/\mid x\mid^{a}]}{\mid x\mid^{\alpha}} \right) (y) \right| = O(\mid y\mid^{-\beta})$$

as $|y| \to \infty$.) Then $T_{a\alpha}$ is bounded on $L^p(\mathbb{R}^n)$ if

$$\left|\frac{1}{2} - \frac{1}{p}\right| < \frac{\beta}{n} \left[\frac{n/2 + \alpha}{\beta + \alpha}\right].$$

Easy examples show that T_{aa} cannot even have weak-type (p, p) if

$$\left|\frac{1}{2} - \frac{1}{p}\right| > \frac{\beta}{n} \left[\frac{n/2 + \alpha}{\beta + \alpha}\right].$$

The question has been raised, whether $T_{a\alpha}$ is bounded on $L^{p_0}(\mathbb{R}^n)$ where

$$\left|\frac{1}{2} - \frac{1}{p_0}\right| = \frac{\beta}{n} \left[\frac{n/2 + \alpha}{\beta + \alpha}\right].$$

But no a priori L^{p_0} inequalities of any sort were known previously. We have proved the following partial result.

THEOREM 2. Let α , a and p_0 be as above, and let q_0 be the exponent conjugate to p_0 . Then $T_{\alpha\alpha}$ extends to a bounded linear operator from $L^{p_0}(\mathbb{R}^n)$ to the Lorentz space $L_{p_0q_0}(\mathbb{R}^n)$. (For an exposition of Lorentz spaces, see [3].)

Theorem 2 follows, using complex interpolation, from the two special cases p=1 and p=2. The case p=2 is immediate from the Plancherel theorem, and the case p=1 is just an example of the following generalization of the Calderón-Zygmund inequality.

THEOREM 2'. Let K be a temperate distribution on \mathbb{R}^n , with compact support; and let $0 < \theta < 1$ be given. Suppose that K is a locally integrable function, away from zero, and that

(i) The temperate distribution \hat{K} is a function, and

$$|\hat{K}(x)| \leq A(1+|x|)^{-n\theta/2} \text{ for } x \in \mathbb{R}^n.$$

(ii) $\int_{|x|>2|y|^{1-\theta}} |K(x)-K(x-y)| dx \leq A$ for all $y \in R(|y|<1)$. Then the operator $f \to K * f$, defined for $f \in C_0^{\infty}(\mathbb{R}^n)$ extends to an operator T of weak-type (1, 1).

Obviously, then, T is a bounded operator on $L^p(\mathbb{R}^n)$, for 1 .

A concrete example of a K satisfying (i) and (ii) is the kernel $K(x) = \exp^{[i/|x|]}/x$ for $x \in \mathbb{R}^1$, |x| < 1, and K(x) = 0 otherwise.

Theorem 2' can be strengthened in various ways. First of all, under reasonable assumptions on K, we can prove a weak-type inequality for the "maximal operator"

$$Mf(x) \equiv \sup_{\epsilon>0} \left| \int_{|y|<\epsilon} K(y)f(x-y)dy \right|.$$

Secondly, a proof almost identical to that of Theorem 2' establishes a weak-type inequality for convolutions with kernels whose singularities lie at infinity, instead of at zero.

For a discussion of $T_{a\alpha}$ and similar operators, see Hirschmann [2] for the one-dimensional case, and Wainger [7] and Stein [6] for the n-dimensional case.

The operators we have discussed so far are only slightly more singular than the Calderón-Zygmund operators of [1], or operators which reduce to them by interpolation. We now discuss L^p inequalities for highly singular operators, for which the techniques of [1], [4], and [6] break down completely.

Let $T_{\alpha}: f \to f * (\sin|x|/|x|^{\alpha})$, for $f \in C_0^{\infty}(\mathbb{R}^n)$. T_{α} has an especially neat interpretation if $\alpha = (n+1)/2$. In fact, the operator S, given by $(Sf)^{\hat{}}(x) = \chi(x) \cdot \hat{f}(x)$ (χ denotes the characteristic function of the unit ball in \mathbb{R}^n), differs from $T_{(n+1)/2}$ by an error term which is relatively small, so that, roughly speaking, S and $T_{(n+1)/2}$ are the same.

It is easy to show that for $p \le 2n/(n+1)$ or $p \ge 2n/(n-1)$, the operator S cannot be extended to a bounded operator on $L^p(\mathbb{R}^n)$. The question of whether $S(\text{or } T_{(n+1)/2})$ extends to a bounded operator on $L^p(\mathbb{R}^n)$ for 2n/(n+1) , or for that matter, for any <math>p other than 2, is a well-known unsolved problem.

By interpolation between p=2, $\alpha=(n+1)/2$, and p=1, $\alpha=n+\epsilon$, it is easy to prove that T_{α} is bounded on $L^{p}(\mathbb{R}^{n})$, for

$$\left(\frac{1}{p} - \frac{1}{2}\right)\left(\frac{n-1}{2}\right) < \alpha - \frac{n+1}{2}, \quad 1 < p < 2, \quad \frac{n+1}{2} < \alpha < n.$$

See [6]. But we have every right to expect a far stronger inequality. For if we assume the conjecture that $T_{(n+1)/2}$ is bounded on $L^{2n/(n+1)+\epsilon}(R^n)$, then it follows (at least heuristically) by interpolation, that T_{α} is bounded on $L^p(R^n)$ for p in the larger range $n/\alpha , <math>(n+1)/2 < \alpha < n$. This is the "right" range, since for $p \le n/\alpha$ it is easily seen that T_{α} does not extend to a bounded operator on $L^p(R^n)$.

THEOREM 3. Let $n/\alpha , and <math>p < 4n/(3n+1)$. Then T_{α} extends to a bounded linear operator on $L^{p}(\mathbb{R}^{n})$.

REFERENCES

1. A. Benedek, A. P. Calderon and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356-365.

- 2. I. I. Hirschmann, On multiplier transformations, Duke Math. J. 26 (1959), 221-242.
 - 3. R. Hunt, On L (p, q) spaces, Ensiegnement Math. (2) 12 (1966), 249-276.
- 4. E. M. Stein, On some functions of Littlewood-Paley and Zygmund, Bull. Amer. Math. Soc. 67 (1961), 99-101.
- 5. ——, The characterization of functions arising as potentials, Bull. Amer. Math. Soc. 67 (1961), 102-104.
- 6. ——, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1967, pp. 316–335.
- 7. S. Wainger, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc. No. 59, 1965.

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540