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In this note, we state some results on the boundedness of certain 
operators on Lp(Rn). The operators which we study are too singular 
to be handled by the ordinary Calderón-Zygmund techniques of [ l ] . 

Our first theorem concerns a sublinear operator g\* which arises in 
Littlewood-Paley theory. If ƒ is a real-valued function on Rn, set 
u(x, t) equal to the Poisson integral of/, defined on i£++1 = Rn X (0, «> ). 
Then for X> 1, the gx*-function on Rn is defined by the equation 

gx*co(*) = ( ƒ ( | 3 _ ' i + < ) <1-nIVu(y>oVdydtj 2. 

(V denotes the gradient in Rn+1.) 
I t is known [4] that if p > 2/X then the operator ƒ—*gx*(jO *s bounded 

on Lp(Rn). On the other hand, if p<2/\ then there are Z> functions 
ƒ such that gx* (ƒ)(#) = + °° for every xÇERn. The behavior of gx* on 
Lp for p = 2/\ is more subtle, and the methods of [ l ] and [4] are 
inadequate to deal with it. 

THEOREM 1. Let 1 < £ < 2 , p = 2fk. Then the operator f-^g^if) has 
weak-type (p, p), i.e. 

measure({* G i f | gt(f)(x) > a}) ^ (A/a*)\\f\\P
p 

for any a>0 and fÇ£Lp(Rn), and the "constant" A is independent of f 
and a. 

This result implies the positive theorem about p>2/\, for the 
case p^2, by the Marcinkiewicz interpolation theorem. 

An argument almost identical to the proof of Theorem 1 gives 
information on fractional integration. In particular, suppose that 
fELp(Rn) and 0 < / ? < l . Stein [5] has shown that the fractional 
integral F=P(f) satisfies the smoothness condition 

1 This work was supported by the National Science Foundation. 
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a \F(x) - F(x-y)\2 V'2 

R 

provided that 2w/(«+2j8) <p; and that conversely, any function 
F£:Lp(Rn) for which iip(F) belongs to Z>, has a fractional derivative 
I-&F in Lp. This result follows from the study of gx*, since one can 
prove a pointwise inequality lJ>p(f)(x)^C*x(f)(x), for n(\ —l)>2/3, 
0 < j 3 < l . 

THEOREM 1'. For 1 < £ < 2 , 2n/(n+2P)=p, and 0 < j 3 < l , //*<? p r ­
ater ƒ—>/*£ C^/) has weak-type (p, p). 

Theorem 1' is the best possible positive result for pp. 
The above theorems exhibit various nonlinear operators which 

are bounded on some Lp spaces, but not on all. There are also some 
known examples of linear operators which are bounded only on some 
of the Lp spaces. For example, consider the operator 

/ -
/ exp[ i / l x\"]\ 

defined for ƒ G C£ (Rn) *. The convolution makes sense if we interpret 
exp [i/\x\a]/\x\ n+a as a temperate distribution on Rn. Fix an a>0 
and an a > 0. For which p does Taa extend to a bounded linear operator 
on Lp(Rn)t If a were negative, then k = exp [i/ \x\a]/\x\ n+a would be 
locally L1; so if we ignore difficulties a t infinity (say by cutting ofï k 
outside of |* | < 1 ) , we find that Taa is bounded on Lp for every 
p (1 <Zp g + oo ), if a < 0 . On the other hand, by computing the Fourier 
transform of exp [i/ \x | ° ] / | x\ n + a , we can deduce that Taa is bounded on 
L2(Rn) exactly when a^ (n/2)a. (Since Taa is defined only on C^(JRn), 
the statement aTaa is bounded on Lp" means that Taa extends to a 
bounded operator on Lp, or equivalently, that the a priori inequality 
| | r a a / | | p ^ | | / | | p holds, for fEC?(R*):) 

Applying a strong form of the Riesz-Thorin convexity theorem, 
we can interpolate between the L1 inequality and the L2 inequality, 
to obtain the following theorem. Let a, a > 0 , and let /3 = ( a + l ) 
(na/2 —a) be positive. (The significance of j3 is that it turns out that 

<exp[V | x \a] y / e x p u / \ x\a\ V I i « 
( i • )<y)\-°(\y\-*) 
\ \xr / I 

as | y | —> » . ) Then Taa is bounded on Lp(Rn) if 
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< 
0 fn/2 + oH 

Easy examples show that Taa cannot even have weak-type (p, p) if 

-[ 
n L 

n/2 + a 

7+ 
The question has been raised, whether Tc 

where 

a J 

is bounded on Lpo(Rn) 

1 

Po 

_ 0 fn/2 + al 

nL 0 + a J' 
But no a priori Lpo inequalities of any sort were known previously. 
We have proved the following partial result. 

THEOREM 2. Let a, a and p0 be as above, and let q0 be the exponent 
conjugate to po. Then Taa, extends to a bounded linear operator from 
Lpo(Rn) to the Lorentz space LPm(Rn). (For an exposition of Lorentz 
spaces, see [3].) 

Theorem 2 follows, using complex interpolation, from the two 
special cases p — \ and p = 2. The case p = 2 is immediate from the 
Plancherel theorem, and the case p — 1 is just an example of the 
following generalization of the Calderón-Zygmund inequality. 

THEOREM 2'. Let K be a temperate distribution on Rn, with compact 
support; and let O < 0 < 1 be given. Suppose that K is a locally integrable 
function, away from zero, and that 

(i) The temperate distribution K is a function, and 

I K(x) I S A(X + I * I ) ~nö/2 for x G Rn-

(ü) / | . I > I I » I ^ \K(x)-K(x-y)\dx£AforaUyeR(\y\ <1 ) . 
Then the operator f—^K * ƒ, defined for}'ELCQ(Rn) extends to an operator 
Tof weak-type (\, 1). 

Obviously, then, T is a bounded operator on Lp(Rn), for \<p 
< + «>. 

A concrete example of a if satisfying (i) and (ii) is the kernel 
2C(x)=exp^i*»/« f o r xER\ \x\ < 1 , and K(x)=0 otherwise. 

Theorem 2' can be strengthened in various ways. First of all, 
under reasonable assumptions on K, we can prove a weak-type in­
equality for the "maximal operator" 
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Mf(x) ^ sup K(y)f(x - y)dy 
«>0 \J |y|<e 

Secondly, a proof almost identical to that of Theorem 2' establishes 
a weak-type inequality for convolutions with kernels whose singu­
larities lie at infinity, instead of at zero. 

For a discussion of Taa and similar operators, see Hirschmann [2] 
for the one-dimensional case, and Wainger [7] and Stein [ó] for the 
n-dimensional case. 

The operators we have discussed so far are only slightly more 
singular than the Calderón-Zygmund operators of [ l ] , or operators 
which reduce to them by interpolation. We now discuss Lp inequal­
ities for highly singular operators, for which the techniques of [ l ] , 
[4], and [ó] break down completely. 

Let Ta:ƒ—•ƒ* (sin|x| /\x\ a ) , for fGC£(Rn). Ta has an especially 
neat interpretation if a = (n+l)/2. In fact, the operator 5, given by 
(Sf)"(x)=x(^)'Kx) (x denotes the characteristic function of the 
unit ball in i?n), differs from T(n+»/2 by an error term which is rela­
tively small, so that, roughly speaking, S and r(n+i)/2 are the same. 

It is easy to show that for p^2n/(n+l) or p^2n/(n — 1), the 
operator S cannot be extended to a bounded operator on Lp(Rn). 
The question of whether 5(or ÜP(W+i)/2) extends to a bounded operator 
on Lp(Rn) for 2n/(n+l)<p<2n/(n-l), or for that matter, for any 
p other than 2, is a well-known unsolved problem. 

By interpolation between p = 2, <x = (n+l)/2, and p = l, a = w+€, 
it is easy to prove that Ta is bounded on Lp(Rn), for 

/ l l\/n-l\ n+1 n+l 

{j-v{—)<"-—•i<p<2- — < • < -
See [ó]. But we have every right to expect a far stronger inequal­
ity. For if we assume the conjecture that T(n+D/2 is bounded on 
L2w/(n+1)+e(jRn), then it follows (at least heuristically) by interpolation, 
that Ta is bounded on Lp(Rn) for p in the larger range n/a<p<2, 
(n+l)/2<a<n. This is the "right" range, since for p^n/a it is 
easily seen that Ta does not extend to a bounded operator on Lp(Rn). 

THEOREM 3. Let n/a<p<2, and p<4:n/(3n+l). Then Ta extends 
to a bounded linear operator on Lp(Rn). 

REFERENCES 

1. A. Benedek, A. P. Calderon and R. Panzone, Convolution operators on Banach 
space valued functions, Proc, Nat. Acad. Sci. U.S.A. 48 (1962), 356-365. 



i969] ON SOME SINGULAR CONVOLUTION OPERATORS 769 

2. I.I. Hirschmann, On multiplier transformations, Duke Math. J. 26 (1959), 221-
242. 

3. R. Hunt, On L (p, q) spaces, Ensiegnement Math. (2) 12 (1966), 249-276. 
4. E. M. Stein, On some f unctions of Littlewood-Paley and Zygmundt Bull. Amer. 

Math. Soc. 67 (1961), 99-101. 
5. , The characterization of functions arising as potentials, Bull. Amer. 

Math. Soc. 67 (1961), 102-104. 
6. , Singular integrals, harmonic functions, and differentiability properties of 

functions of several variables, Proc. Sympos. Pure Math., vol. 10, Amer. Math. Soc, 
Providence, R.I., 1967, pp. 316-335. 

7. S. Wainger, Special trigonometric series in k-dimensions, Mem. Amer. Math. Soc. 
No. 59, 1965. 

PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540 


