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Let X be a real Banach space with dual X*. A monotone operator 
from X to X* is by definition a (generally multivalued) mapping T 
such that 

(x — y, x* — y*) è 0 whenever x* G T(x), y* G r(y) 

(where ( • , • ) denotes the pairing between X and X*). Such an opera­
tor is said to be maximal if there is no monotone operator T' from X 
to X*, other than T itself, such that T'(x)Z)T(x) for every X. The 
effective domain D(T) and rawge i£(!T) of a monotone operator T are 
defined by 

D(T) = {x\ T(x) * 0} C I , 

je(z) = u {T(x)\xex} CI*. 
Minty [9] has shown that, when X is finite-dimensional and T is 

a maximal monotone operator, the sets D(T) and R(T) are almost 
convex, in the sense that each contains the relative interior of its con­
vex hull. The purpose of this note is to announce some generalizations 
of Minty's result to infinite-dimensional spaces. 

A subset C of X will be called virtually convex if, given any rela­
tively (strongly) compact subset K of the convex hull of C and any 
€>0 , there exists a (strongly) continuous single-valued mapping <t> 
from K into C such that ||#(x)— *|| =* f ° r every xÇ:K. I t can be 
shown that , in the finite-dimensional case, C is virtually convex if 
and only if C is almost convex, so that the following result contains 
Minty's result as a special case. 

THEOREM 1. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. Then the strong closures of D(T) and R(T) are 
convex. If in addition X is separable, or if X is an Lp space with 
\<p < oo, D{T) and R(T) are virtually convex. 

The proof of Theorem 1, which will appear in [12], is made possible 
by recent results of Asplund [ l ] , [2] concerning the existence of 

1 Supported in part by the Air Force Office of Scientific Research under grant 
AF-AFOSR-1202-67. 
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single-valued duality mappings J: X-+X*, and results of Browder 
[5] concerning the invertibility of mappings of the form T+\J, X>0, 
where T is a maximal monotone operator. 

Since the subdifferential df of a lower semicontinuous proper con­
vex function ƒ on X is a maximal monotone operator (Rockafellar 
[l4]), Theorem 1 yields a new result about the existence of subgradi-
ents. (It has been observed elsewhere [3] that the strong closures of 
D(df) and R(df) are convex even when X is not reflexive.) 

COROLLARY. Let X be reflexive and separable {or an Lp space with 
1 <p< 00), and let f be a lower semicontinuous proper convex f unction 
on X. Then D(df) and R(df) are virtually convex. 

Theorem 1 is applicable in particular to any single-valued mono­
tone operator T with D(T)=X such that T is hemicontinuous, i.e. 
continuous from line segments in X to the weak* topology of X*, since 
such a T is known to be maximal (Browder [4]). 

The following convexity result covers certain cases where X is not 
reflexive. Here T is said to be locally bounded at a point x if there 
exists a neighborhood U of x such that the set 

T(U) = U{T{u)\uEU} 

is bounded in X*. 

THEOREM 2. Let T be a maximal monotone operator from X to X*. 
Suppose either that the convex hull of D(T) has a nonempty interior, or 
that X is reflexive and there exists a point of D{T) at which T is locally 
bounded. Then the interior of D{T) is a convex set whose {strong) closure 
is the closure of D{T). Moreover, T is locally bounded at every interior 
point of D(T), whereas T is not locally bounded at any boundary point 
ofD{T). 

The local boundedness assertion of Theorem 2 strengthens a result 
of Kato [8], according to which a monotone operator T is locally 
bounded at any interior point of D{T) where it is hemibounded. 

Theorem 2 will be deduced in [13] from a more general theorem for 
locally convex spaces. The theorem of Debrunner-Flor [6] plays an 
important role in the proof. 

The consequences of Theorem 2 include: 

COROLLARY 1. Let X be reflexive, and let T be a maximal monotone 
operator from X to X* such that the convex hull of R{T) has a nonempty 
interior. Then the interior of R{T) is a convex set whose closure is the 
(strong) closure of R(T). 
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COROLLARY 2. Let T be a maximal monotone operator from X to X*, 
and let Do be the subset of D(T) where T is single-valued. Then T is demi­
continuous on Do, i.e. continuous as a single-valued mapping from Do 
in the strong topology to X* in the weak* topology. 

COROLLARY 3. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. Suppose there exists a subset B of X such that 0 
belongs to the interior of the convex hull of 

T(B) = U {T(x)\xEB}. 

Then there exists an x such that 0^T(x). 

COROLLARY 4. Let X be reflexive, and let T be a maximal monotone 
operator from X to X*. In order that R(T) be all of X*, it is necessary 
and sufficient that, whenever x*^T(xi)for i = \, 2, • • • , and ||x*||—»<», 
then the sequence x*, x*, • • • , has no strongly convergent subsequence. 

Corollary 2 may be compared with the result of Kato [8] that a 
single-valued monotone operator T is demicontinuous on any open 
subset of D(T) where it is hemicontinuous. Corollary 3 is a generaliza­
tion of the main existence theorem of Minty [lO], which requires in 
effect that 0 be an interior point of the convex hull T0(B), where T0 

is some mapping such that To(x)QT(x) for every x and 

sup sup (x, x*) < oo. 
xeB a;*€r0(x) 

The necessary and sufficient condition in Corollary 4 is satisfied, in 
particular, when the following condition is satisfied: whenever 

*i G T(xi) for i = 1, 2, • • - , 
and 

lim||ff,-|| = oo, then lim||#,-|| = oo. 
i—»oo i—»oo 

(The two conditions are equivalent, of course, when X is finite-
dimensional.) The sufficiency of the latter condition for R(T) to be 
all of X* has previously been established by Browder [4, Theorem 4] . 
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