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flat manifold is necessarily flat. This answers a conjecture of Aus-
lander and Wolf posed in [5]. 

(F) The notion of totally convex sets can be used to study iso-
metries of complete manifolds of nonnegative curvature. 
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1. E. Hopf [6, p. 66] suggested that strong mixing in infinite mea­
sure spaces should be defined by a limit statement on certain ratios; 
Krickeberg [9] made this precise in the context of topological mea­
sure spaces. In this paper we shall consider a different concept of 
strong mixing, meaningful also without existence of a topological 
structure. Our notion coincides with the usual concept of strong 
mixing in the case of finite measure spaces and seems to be the proper 
generalization to the infinite measure case in that it is exactly the 
concept needed to carry over certain theorems on mixing which hold 
in finite measure spaces. 

Given a sequence (An) of measurable sets on a measure space 
(Ö, a, ix), the intersection 6i(An) of the <r-algebras (&k(An) generated by 
Ak, Ak+i, • • • will be called the remote <r-algebra of (An). A sequence 
(An) is called remotely trivial, iff 6i(An) is trivial, i.e., contains only 
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null sets and their complements. The sequence (An) is called semi-
remotely trivial iff every subsequence contains a further subsequence 
which is remotely trivial. I t is known [12] that a sequence of sets in 
a finite measure space is mixing if and only if it is semiremotely 
trivial ; hence a measure-preserving transformation T in a finite mea­
sure space is mixing if and only if for any measurable A, the sequence 
Ay T~lA, T~2A, • • • is semiremotely trivial. We call a measure-
preserving transformation T in a <r-finite measure space mixing iff for 
every set A with finite measure, the sequence A, T~lA, T~2A, • • • is 
semiremotely trivial; we call T completely mixing, iff this is true for 
every measurable set A. We prove that a measure-preserving transfor­
mation T is mixing if and only if ix(T"nAr\A)—>0 for every set A of 
finite measure. Exact endomorphisms are completely mixing, but 
Kolmogorov automorphisms are only mixing. In fact, complete mix­
ing for arbitrary nonsingular invertible transformations is equivalent 
with the existence of a finite equivalent invariant measure for which 
T is mixing. We also show the equivalence of complete mixing with a 
mixing condition involving differences of measures (condition (7) in 
Theorem 5), introduced by Mrs. Dowker, thus negatively answering 
her question, whether in infinite measure spaces Kolmogorov auto­
morphisms are mixing in her sense. In infinite measure spaces, how­
ever, Kolmogorov automorphisms seem of less interest than remotely 
infinite automorphisms, introduced below. Using the concept of re­
motely infinite automorphism we solve, within the class of conserva­
tive automorphisms, an isomorphy problem asked by Halmos [S]. 

We further prove for transformations in infinite measure spaces the 
analogue of a theorem of Blum and Hanson [2]: The mean ergodic 
theorem in Lp (p>\) holds for all sequences (jT*n) if and only if T is 
mixing. Finally, we relate complete mixing to unaveraged L% conver­
gence to zero. 

2. All sets and functions introduced below are assumed measur­
able; all relations are assumed to hold modulo sets of jot-measure zero. 
A sequence (An) of sets is called remotely infinite iff (&{An) contains 
besides the empty set 0 only sets of infinite measure; (An) is called 
semiremotely infinite iff every subsequence of (An) contains a remotely 
infinite subsequence. The collection of sets of finite measure is de­
noted by $. 

THEOREM 1. Assume /x(0) = oo. The following conditions are equiva­
lent for a sequence of sets An with fx(An) bounded by a constant c : 

For each JFESF, ix(Anr\F)-*0;for every integer k, \\mnix(Anr\Ak) = 0 ; 
(An) is semiremotely trivial; (An) is semiremotely infinite. 
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If one, and hence all, of the conditions of Theorem 1 hold, the 
sequence (An) is called mixing. 

COROLLARY 1. Let Ofco, Ofci, • • • be a decreasing sequence of a-algebras 
contained in (X and let (£«, = f)^m0(%i* A necessary and sufficient condition 
that Ctoo contain only the empty set 0 and sets of infinite measure, is that 
for each c>0 and for each FGSS p(Anr\F)—»0 uniformly in the class of 
all sequences (An) with AnE.Q>n and ix(An) <c. 

THEOREM 2. Let (An) be a sequence of measurable sets in a a-finite 
measure space (Q, Ct, fi). Then the following conditions (i) and (ii) are 
equivalent: 

(i) {An) is semiremotely trivial. 
(ii) fAnfdn~*0for allfÇzLi(Q, a, JU) withffdfi-O. 

A measurable transformation T of a measure space (ft, &f /x) is 
called null-preserving iff ix{T~lA) = 0 holds for all A G Ct with JJL(A) = 0; 
it is called measure-preserving iff n(A) ~ix(T~lA) for each A Go . 
Measure-preserving transformations will be called endomorphisms for 
brevity. An endomorphism T on (ft, Cfc, /x) is called an automorphism if 
T"-1 is also an endomorphism on (ft, Cfc, JU). A null-preserving transfor­
mation T is called mixing iff for every set A G^, the sequence r~M 
is semiremotely trivial ; T is called completely mixing iff the same is 
true for all AÇz&- By Theorem 2, in the finite measure case, when 
both notions coincide, they agree with the usual notion of (strong) 
mixing. Henceforth, we shall assume that /x(Q) = oo. 

An endomorphism T is by Theorem 1 mixing iff ƒ o Tn tends weakly 
to zero in Li for every ƒ G£2(ft, Ct, M) î ^2 may be replaced by any other 
Lp with l<p<<*>. By Theorem 1 an endomorphism T is mixing 
iff ii(T-nAr\A)—»0, A G-P. Endomorphisms T with this property are 
called of zero type; endomorphisms T for which lim sup ix(T~nAr\A) 
> 0 if 0<fi(A) < 00, are called of positive type. Hajian and Kakutani 
[4] asserted the existence of automorphisms of both types. A set 
A GCt is called invariant iff T"1A —A. 

THEOREM 3. If T is an endomorphism of a cr-finite measure space 
(0, Ct, jit), then ft uniquely decomposes into two invariant sets fto and ft+, 
such that T restricted to fto is of zero type (equivalently : mixing) and T 
restricted to ft+ is of positive type. 

An endomorphism T of (ft, a, n) is called exact iff fl/lo^"*^ 
= { 0 , ft}. Examples of exact endomorphisms are provided by uni­
lateral shifts on stochastic processes with infinite invariant measure 
and trivial remote c-algebra; e.g., null-recurrent aperiodic Markov 
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chains or aperiodic random walks (see [ l ] and [8]). Clearly exact 
endomorphisms are completely mixing. We relate the concept of 
mixing to the spectral structure of an endomorphism T. T induces an 
isometric operator UT in L<L(Q,, (5fc, /x) by the relation Urf—f o T, ƒ £1*2. 
T is said to have Lebesgue spectrum iff there exist two disjoint index 
sets I\ and h (one of which may be empty) and an orthonormal basis 
of L2: 

(ƒ*,*; i EIi,k = 0, ±1, ± 2 , • • •} U {f,yj G 1%, k = 0, 1, 2, • • • }, 

such that UTfi,h =fi,k+i for all iy k. 

THEOREM 4. If an endomorphism T in an infinite measure space 
(£2, a, /x) has Lebesgue spectrum^ then T is mixing. 

In fact the spectral structure and mixing do not depend on the 
triviality of the remote cr-algebra; it suffices that this cr-algebra con­
tain no nontrivial sets of finite measure. An endomorphism T in an 
infinite measure space (Q, Œ, ju) is called remotely infinite iff ^r\f)t^oT"ka 
= { 0 } . An automorphism on (Ö, a, ju) is called a Kolmogorov auto­
morphism iff there exists a cr-algebra Œo such that /x restricted to Ct0 is 
<7-finite and 

(1) r^CtoCCto; 
(2) 11*% TkQ,o generates Ofc; 

(3) nt%:r-*ao={0,u}. 
If in this definition (3) is replaced by 

(4) ^nn t%^ao={0}, 
T is called a remotely infinite automorphism. Remotely infinite auto­
morphisms and endomorphisms have Lebesgue spectrum; therefore 
remotely infinite automorphisms are mixing. For automorphisms the 
index set Li in the definition of the Lebesgue spectrum is empty. 
Under some assumptions on the measure space, the cardinality of I\ 
is denumerably infinite; this is so if (0, &> /A) is a Lebesgue space (see 
[ l l ] ) . Thus any two remotely infinite automorphisms in a Lebesgue 
space are spectrally isomorphic. Halmos [5] asked whether in the 
class of automorphisms of cr-finite measure spaces, ergodicity was a 
spectral invariant. Parry [lO] has given a negative answer to this 
problem, constructing a nonergodic dissipative automorphism which 
is spectrally isomorphic to an ergodic conservative one. Since dissipa­
tive automorphisms, at least in Ergodic Theory, are in a sense patho­
logical, and the isomorphy problem can easily be solved for the class 
of all dissipative automorphisms (see [7]), it seems of interest that 
ergodicity is not even a spectral invariant in the narrower class of 
conservative automorphisms: I t follows from a result of Blackwell 
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and Freedman [l , Corollary 2] that bilateral shifts on null-recur­
rent Markov chains are remotely infinite; hence any two such shifts 
have countable Lebesgue spectrum and therefore are spectrally iso­
morphic. Let T be the bilateral shift on a null-recurrent irreducible 
Markov chain of period d^2. Let V~Td\ then T and T' are spec­
trally isomorphic because a power of an automorphism with count­
able Lebesgue spectrum has countable Lebesgue spectrum, but T is 
ergodic and T' is not. 

An invertible transformation T of 0 is a one-to-one map T: Q—»Q 
such that T~l6,= Ct = T®. T is called nonsingular iff ^(A) = 0 implies 
ti(T-1A)=fx(TA)=0. 

THEOREM 5. Let T be an invertible nonsingular transformation on a 
a-finite measure space (0, Ct, /z). The following conditions are equivalent', 

(a) T is completely mixing. 
(]8) There is an equivalent invariant probability measure wo such that 

T is mixing on (Ö, Cfc, 7To). 
(7) For any two probability measures wu ^2 equivalent with /*, 

Tn(T-nA) - TI{T-*A) -* 0 A E a. 

THEOREM 6. Let T be a endomorphism in a cr-finite infinite measure 
space and let p be a real number with l<p< <*>. If T is mixing and 
fÇzLp, then 

1 n I 

2>H (5) 
n »--i 

0 

uniformly in the set K of all strictly increasing sequences (kn) of natural 
numbers. Conversely, if f or every fGLp and every (kn)GKj (5) holds, 
then T is mixing. 

The uniform convergence in K may also be shown in the Blum-
Hanson theorem (finite measure case). 

We let Tnf^diwoT-^/dix where ƒ = dw/dfi. 

THEOREM 7. Let T be a null-preserving point-transformation in a 
a-finite measure space (Q, Ct, JJL) and assume (a) : There exists no invari­
ant ^-continuous probability measure IT. Then T is completely mixing if 
and only if 

(6) Km||r»/ | | i = 0 
n 

for all functions f QLi with ffdfx = 0. If T is conservative, then the as­
sumption 7T<C/x in (a) may be replaced by 7r~/z. 
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As applied to null-recurrent irreducible aperiodic Markov chains, 
Theorem 7 is a strengthening of a theorem of Orey (cf. [ l ]) , which 
assumes that ƒ is one-dimensional (defined on integers). Theorem 7 
may be also applied to transient Markov chains (cf. [8]). 
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