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1. Introduction. In its simplest form the method for calculating 
the Whitehead product (WP) Tni(X)®Tn%(X)—>Trni+n%-x(X) may be 
described as follows. Suppose X is embedded in an i?-space E so that 
the pair (E, X) has trivial homotopy groups in dimensions <ni+ti2. 
Then we prove that the W P [at, ce2] of ai^Tni(X)^7rWl(E) and 
0L2€z7rnt(X)^wni(E) is the image under a homomorphism Hnx+nt(E) 
-^Tm+m-iiX) of the Pontrjagin product of h(ai) and h(a?) in the 
homology ring H*(E), where h: 7r*(E)—»JH*(E) denotes the Hurewicz 
homomorphism. Thus, to determine [«i, <x2], it is necessary to know 
(1) the effect of h on a\ and ce2, (2) the Pontrjagin product of h(ai) and 
&(a2), (3) the homomorphism Hni+n3(E)—>wni+ns-i(X). 

I t is, however, only sometimes possible to find an iï-space for which 
the information (1), (2) and (3) is available. As a first example, con­
sider the classifying space B Ut of the unitary group Ut and the W P 

7T2r+2(BUt) ® T2*+2(BUt) - * 7T2t+l(BUt), t = T + S + 1. 

Here we embed B Ut in the iï-space B U*> and note that the required 
information is known. In this way we obtain a new proof of a theorem 
of Bott [ l ] . For a second example suppose 7r»(X)=0 for i<n and 
n<i<2n — 1 and wn(X) = w, where n is odd. Then X can be embedded 
in K(w, n). The Pontrjagin square in H2n(7r, n) is zero and so [at a] = 0 
for any aÇzw. This result is due to Meyer and Stein [8] (see also §3). 

We actually generalize the preceding method by considering &th 
order WP's instead of ordinary WP's and by requiring that there exist 
a pair (E, A) with A operating on E rather than an iî-space E. Our 
main result Theorem 1 then yields for ordinary WP's (& = 2) both the 
assertion of the first paragraph and a theorem of Meyer [4], For 
k>2 it enables us, in §3, to extend Bott 's theorem by computing feth 
order WP's in 7r*(BUt), and to examine in some detail the i t h order 
W P 

whenwi(X)=0 iori<nand n<i<kn — l. 
Details of these results and other applications will appear else­

where. 
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2. The Main Theorem. We recall the definition of a kth order 
WP [5]. Elements arE7rnr(X)t r = l, • • • , k, de t e rmine / : V=S\ 
V • • • VSnk-+X. Let T=T(S»u • • • , S\) denote the subspace of 
P = SniX • • • XS\ of ^-tuples with at least one coordinate at the 
base point. If 

N = Z *,, X G HN(P, T)~Z 

is a generator and ƒ: T-+X an extension of/, then ƒ# dh^ÇK) is in 
7TJV_I(-X"), where h is the Hurewicz homomorphism, d the bound­
ary homomorphism and ƒ# the homomorphism induced b y / : 

HN(P, T) Î- TN(P, T) XTN^(T) à w . i ( X ) . 

The kth order Whitehead product [cei, • • • , ak] is the (possibly empty) 
subset {fidh^ÇK)] for every extension ƒ of/} of TTN-I(X). When & = 2 
the subset [ai, ce2] consists of a single element, the ordinary W P of 
OJI and OJ2. We say that a subspace 4 of a space £ operates on £ if there 
exists a map /x: EX-4—>E such that ju| E is homotopic to the identity 
map and fx\ A is homotopic to the inclusion. Then ju induces the gen-
eralized Pontrjagin product H*(E) ®H*(A)—>H*(E). 

Suppose X is 1-connected and 
(a) there exists a pair (£ , A) such that A operates on E and the 

inclusion i: A-+E induces an isomorphism if: 7r8(A)-^7r8(E) for s 
— n<z, • • • , tik 

(b) there exists a map X—>E such that 7r8(X)-*7r8(E) is an iso­
morphism for s<N— 1 and an epimorphism for s — N—1. By using 
the mapping cylinder we may assume that the map X—>E is an 
inclusion. Then the pair (£, X) is (iV—1) -connected and so 
h: WN(E, X)—>HN(E, X) is an isomorphism. Thus a homomorphism 
HN{E)—>TTN-\(X) can be defined as the composition 

HN{E) ±> HN(E, X) — > TN(E, X) -> irN^(X) 

where j is induced by inclusion and d is the boundary homomorphism. 
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THEOREM 1. Under the assumptions stated above, the kth order WP set 

[<*i, • • • , au] of ar G Tnr(X)y r = 1, • • • , k, 

is nonempty and one of its elements is 

dh j(h(ai) * h(i# a2) * • • • * h(i§ au)) 

where "*" denotes the generalized Pontrjagin product. 

For the next result assume that X is (p — l)-connected. Let Xn 

denote the nth Postnikov section of X and Xq>p+q-2 the fibre of 
Xp+q-.2—>Xq-i. Since this fibration is principal, there is an action of 
XqtP+q-.2 on Xp+q~2. Letting 

A = Xg,p_|_ff_2> E = Xp+q—2 and X —> Xp+q—2 

be the projection, we derive Meyer's theorem [4] on the WP of 
cxiCzTpiX) and a2^Tq(X): 

COROLLARY 2. [a%f a2]—dh-lj(h(ai)*h(i#la%)). 

We note that dhrxj can be identified with the transgression 

HP+q(XP+q-.2) —> Hp+q-i(Fp+q„i) = 7Tp+a_i(X) 

of the fibration 

^Wff-l """* -^H-3-1 """* Xp+a~2. 

COROLLARY 3. /ƒ there exists a map of X into an H-space E such that 
7r8(X)—>w8(E) is an isomorphism f or s<N—l and an epimorphism for 
s = N~l, then dh^xj(hai* • • • *hak)£:[aif • • • , a^C>iv-iCXr), where 
' V denotes Pontrjagin product in H*(E). 

3. Higher order Whitehead products. Here we use Corollary 3 to 
calculate some higher order WP's . 

THEOREM 4. If arÇEw2mr+2(BUt)**Z and yGT2t+i(BUt)^Zt\ are 
suitable generators•, r = l, • • • , k and t~mi+ • • • +mk+k — lf then 

mil • • • mA!7 G [ai, • • • , <xk] C T2t+i(BUt). 

The proof proceeds by embedding BUt in 5£/M and applying 
Corollary 3. The factorials appear because h(ar) =mr\pr, where pr is 
a generator of primitive elements in H2mr+2(BUO0) [3]. 

REMARK. For k = 2, Theorem 4 provides a new proof of Bott 's 
theorem [l ] on the WP 7r2r+2(-S Ut) ®7r2«+2(5 Ut)-*wu+i(B Ut) (or, what 
is the same thing, the Samelson product ir2r+i(Ut) ®T2*+i(Ut)-->x2 *(£/*)), 
t = r+s+l. In addition, we can prove a result similar to Theorem 4 
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for the symplectic group Spt and retrieve Bott's theorem on Samelson 
products in x*(Spt) [ l ] . 

For the remainder assume that Wi(X)=0 for i<n and n<i<kn 
— 1 (n>l) and set Trn(X)=ir and wkn-i(X) — G. Then the &th order 
W P of elements of w is a unique element of G. Let l*:Hkn(T, n) 
—*Hkn(G, kn) = G be induced by the first Postnikov invariant / of X 
and denote by 7*: Hn(w, w) = T-*Hnk(w, n) the &th divided power in 
the ring H+fan) [2]. 

THEOREM 5. Let a £7rn(X) andsi, • • • , sk be any integers. 
(a) If nis odd y then [sia, • • • , $*a] = 0 . 
(b) /ƒ w w even, then [s\a, • • • , s*a] =5! • • • $*&! l*(yk(a)). 

The proof consists of embedding X in i£(7r, w) and applying Corol­
lary 3. The necessary information on H*(TT, n) is known [2]. 

COROLLARY 6. / # addition, assume that 7r = G — Z and l = mbh> a 
multiple of the kth cup product of the basic class b ÇzHn(Zt n). Then if n 
is even, [sxot, • • • , ska] =mk\ s% • • • sky for a generator y of Z. 

REMARKS. (1) Porter's result [7] on the feth order W P in complex 
projective (k — l)-space follows immediately from Corollary 6 by 
setting n = 2 and m = 1. 

(2) Theorem 5 and Corollary 6 provide another way to obtain 
some of Porter's examples for certain phenomena regarding higher 
order WP's [6]. 

(3) For k = 2 Theorem S is a special case of a theorem of Stein [8]. 
We note that one direction of Stein's theorem can be extended to feth 
order WP's. 
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