THE IMPOSSIBILITY OF DESUSPENDING COLLAPSES

BY W. B. R. LICKORISH AND J. M. MARTIN¹

Communicated by R. H. Bing, April 8, 1968

It is known that in order to prove the polyhedral Schoenflies conjecture in all dimensions, it is enough to show that, if (B^4, B^3) is a (4, 3) ball pair, then B^4 collapses (polyhedrally) to B^3 . Recently, using the solution to the polyhedral Poincaré conjecture in high dimensions, Husch has shown [3] that if (B^7, B^6) is a (7, 6) ball pair, then B^7 collapses to B^6 . It is tempting to try to prove that B^4 collapses to B^3 by invoking the following conjecture.

Conjecture A. If M is a polyhedral manifold, L a submanifold of M and $S(M) \searrow S(L)$, then $M \searrow L$. (S(X) denotes the suspension of X and " \searrow " denotes a polyhedral collapse.)

If Conjecture A were true we could suspend a (4, 3) ball pair three times to obtain a (7, 6) ball pair, use Husch's result, and then apply Conjecture A three times in order to desuspend the collapse.

In this note we present a counterexample to Conjecture A, and discuss other conjectures related to the problem of desuspending collapses.

EXAMPLE 1. Let M^4 be a polyhedral 4-manifold, as described in [4] or [5], with the following properties. (a) M^4 is contractible, (b) $\pi_1(\partial M) \neq 0$, (c) $M^4 \times I \cong B^5$. Consider $S(M^4)$ as $M^4 \times I$ together with a cone on $M^4 \times \{0\}$ and another cone on $M^4 \times \{1\}$. Thus if v_0 and v_1 are the vertices of these cones,

$$S(M^4) = (M^4 \times I) \cup (v_0 * (M^4 \times \{0\})) \cup (v_1 * (M^4 \times \{1\})).$$

Now let B^3 be a 3-ball in ∂M^4 . Since $M^4 \times I$ is a 5-ball, with $B^3 \times I$ as a face, there is an elementary collapse

$$M^4 \times I \setminus (M^4 \times \{0\}) \cup (M^4 \times \{1\}) \cup [(\partial M^4 - \operatorname{int} B^3) \times I].$$

Thus there is a collapse

$$S(M^4) \setminus (v_0 * (M^4 \times \{0\})) \cup (v_1 * (M^4 \times \{1\})) \cup ((\partial M^4 - \operatorname{int} B^3) \times I).$$

Now, by collapsing conewise $v_i * (M^4 \times \{i\})$ to $v_i * ((\partial M^4 - \operatorname{int} B^3) \times \{i\})$, for i = 0 and 1, we have $S(M^4) \setminus S(\partial M^4 - \operatorname{int} B^3)$. However, since $\pi_1(M^4) = 0$ and $\pi_1(\partial M^4 - \operatorname{int} B^3) \neq 0$, $M^4 \times \partial M^4 - \operatorname{int} B^3$. This provides a counter-example to Conjecture A,

Remark 1. By taking two copies of the above manifold, M_1 and

 $^{^{1}}$ This paper was written while the second author was a fellow of the Alfred P. Sloan Foundation.

 M_2 , 3-balls B_1 and B_2 in their boundaries and identifying ∂M_1 —int B_1 with ∂M_2 —int B_2 , one can obtain a similar counter-example in which $M = M_1 \cup M_2$ is a 4-ball, and $L = \partial M_1$ —int B_1 is properly imbedded in M.

REMARK 2. By adapting Example 1, the following can be proved. There exists a polyhedron X and a point $x \in X$ such that $S(X) \setminus S(x)$ but X is not collapsible. Take X as $X = M^4 \cup (x * (\partial M^4 - \operatorname{int} B^3))$; i.e. X is the 4-manifold mentioned in Example 1 together with a cone on its boundary less the interior of a 3-ball. Now $S(X) \setminus S(x)$ by a similar argument to that used above. Suppose X is collapsible. Then $X \setminus x$ (as a collapsible polyhedron collapses to any given point). Then X is P.L. homeomorphic to a regular neighbourhood of x in X (regular neighbourhoods in polyhedra are defined and extensively discussed in [2]). $x * (\partial M^4 - \operatorname{int} B^3)$ is such a regular neighbourhood, so by the regular neighbourhood uniqueness theorem [2] there is a P.L. homeomorphism

$$h: X, x \rightarrow x * (\partial M^4 - int B^3), x.$$

Hence restricting h to the points of X which do not have neighbourhoods which are open 4-cells, h maps the 3-sphere $B^3 \cup (x*\partial B^3)$ homeomorphically onto $(\partial M^4 - \mathrm{int} B^3) \cup (x*\partial B^3)$ which is homeomorphic to ∂M^4 . This is impossible as $\pi_1(\partial M^4) \neq 0$, and hence X, is not collapsible.

We now turn our attention to a problem involving simplicial collapsing. Bing [1] has given an example of a triangulation of a 3-cell which is not collapsible. One would hope to be able to suspend this triangulation to obtain noncollapsible triangulations of the n-cell. This leads to Conjecture B.

*Conjecture B. If K is a complex, L is a subcomplex of K, and $S(K) \searrow S(L)$, then $K \searrow L$. ("\sqrt{"}" denotes simplicial collapsing.)

We do not know the answer to Conjecture B, but it seems likely that it is false (although it is not difficult to prove it true if K is only two-dimensional). The following question is related to Conjecture B.

QUESTION 1. Is there a complex K, with subcomplexes X and Y such that $K \searrow X$, $K \searrow Y$, $K \searrow X \cup Y$, but $K \swarrow X \cap Y$?

An affirmative answer to Question 1 would provide a counter-example to Conjecture B as follows: Suppose that K, X and Y have the properties stated in Question 1. Consider S(K) as $(a \cup b) * K$ where a and b are two points. Now since $K \searrow X$, $S(K) \searrow (a * X) \cup (b * K)$. Since $K \searrow Y$, $(a * X) \cup (b * K) \searrow (a * X) \cup (b * Y)$. This latter complex collapses simplicially to $(a * X) \cup (b * Y)$ because $K \searrow (X \cup Y)$. By collapsing conewise towards a and b,

$$(a*X) \cup (b*Y) \stackrel{*}{\searrow} (a*(X \cap Y)) \cup (b*(X \cap Y)) = S(X \cap Y).$$

Thus

$$S(K) \stackrel{\checkmark}{\searrow} S(X \cap Y)$$
 but $K \stackrel{*}{\swarrow} X \cap Y$.

Using the manifold M^4 employed in Example 1, it is possible to show as follows that Question 1 would have an affirmative answer if polyhedral collapsing replaced simplicial collapsing.

EXAMPLE 2. Let M^4 be the manifold used in Example 1, and let B^3 be a 3-ball in ∂M^4 as before. Let X and Y be sub-polyhedra of $M^4 \times I$ defined by

$$X = (M^4 \times \{0\}) \cup ((\partial M^4 - \operatorname{int} B^3) \times I)$$

$$Y = (M^4 \times \{1\}) \cup ((\partial M^4 - \operatorname{int} B^3) \times I).$$

Using the product structure of $M^4 \times I$,

$$M^4 \times I \searrow X$$
 and $M^4 \times I \searrow Y$.

Because $M^4 \times I$ is a 5-ball, $M^4 \times I \setminus X \cup Y$, but $M^4 \times I \times X \cap Y$ since $X \cap Y = ((\partial M^4 - \text{int } B^3) \times I)$ is not simply connected.

QUESTION 2. With M^4 , X and Y as in Example 2, is there a triangulation of $M^4 \times I$, triangulating X and Y as subcomplexes, so that $M^4 \times I \searrow^4 X$, $M^4 \times I \searrow^4 Y$, and $M^4 \times I \searrow^4 X \cup Y$?

* Added in proof. The answer to Question 2 is "Yes." L. C. Glaser has pointed out that this follows at once from Theorem 7 of J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math Soc. 45 (1939), 243-327. Thus Question 1 has an affirmative answer, and so Conjecture B is false.

REFERENCES

- 1. R. H. Bing, Some aspects of the topology of 3-manifolds related to the Poincaré conjecture, Lectures on modern mathematics, Vol. II, Wiley, New York, 1964.
 - 2. M. M. Cohen, A general theory of relative regular neighborhoods (to appear).
 - 3. L. S. Husch, On collapsible ball pairs (to appear).
- 4. B. Mazur, A note on some contractible 4-manifolds, Ann. Math. 73 (1961), 221-228.
- 5. V. Poénaru, La décomposition de l'hypercube en produit topologique, Bull. Soc. Math. France 88 (1960), 113-129.

University of Wisconsin, Madison