EXPECTATIONS IN VON NEUMANN ALGEBRAS

BY ANDRE DE KORVIN¹

Communicated by B. Yood, April 24, 1968

1. Introduction. Let M be a von Neumann algebra. Let N be a von Neumann subalgebra of M. An expectation from M on N is defined to be a positive map Φ of M into N which preserves the identity and satisfies $\Phi(AX) = A\Phi(X)$ for all X in M and all A in N. Φ is a normal expectation if $\Phi(\sup X_{\alpha}) = \sup \Phi(X_{\alpha})$ where X_{α} is a set of uniformly bounded selfadjoint operators of M. Let $\{\Phi_{\alpha}\}$ be a set of expectations of M on N. $\{\Phi_{\alpha}\}$ is said to form a complete set if $\Phi_{\alpha}(X) = 0$ for all α and X positive in M, imply X = 0. A state ρ of M will be a positive linear functional on M of norm one. As above one can define normal and faithful states and complete families of states. ρ is said to diagonalize N if $\rho(AX) = \rho(XA)$ for all X in M and all A in N. Let Z be the center of N.

2. Results.

THEOREM 1. Suppose there exists a set of states $\{\rho_{\alpha}\}$ of M satisfying:

- (1) Each ρ_{α} diagonalizes N,
- (2) Each ρ_{α} restricted to N is normal,
- (3) The set of ρ_{α} is complete. Then there exists a complete set of expectations from M to N and N is a finite von Neumann algebra. If all ρ_{α} are normal in M all these expectations are normal. Conversely if N is finite and if there exists a complete set of expectations of M on N, then there exists a set of states of M satisfying (1), (2), (3).

THEOREM 2. Let M be a von Neumann subalgebra of $\mathfrak{L}(h)$ then if there exists a complete set of expectations of $\mathfrak{L}(h)$ on M, M is atomic. Conversely if M is an atomic von Neumann subalgebra of $\mathfrak{L}(h)$, then there exists a complete set of normal expectations of $\mathfrak{L}(h)$ on M.

COROLLARY. There exists a complete set of expectations of $\mathfrak{L}(h)$ on M if there exists a complete set of expectations of $\mathfrak{L}(h)$ on the commutant of M.

 N^{o} will now denote the relative commutant of N in M i.e., $N^{o} = N' \cap M$ where N' are all operators of $\mathfrak{L}(h)$ which commute with N. Let $\mathfrak{U}(\mathfrak{A})$ denote the unitary group of a von Neumann algebra \mathfrak{A} . Now let G be a subgroup of $\mathfrak{U}(M)$. By a Schwartz map relative to

¹ These results were developed for a Ph.D. thesis at the University of California, Los Angeles under the direction of Professor Henry Dye.

- (G, M) is meant a linear map P of M into itself such that
 - (1) $P(X) = UP(X)U^{-1}$ for all U in G and all X in M.
- (2) P(X) belongs to the weak closure of the convex hull generated by elements of the form UXU^{-1} as U ranges over G.

S(G, M) will designate all Schwartz maps relative to (G, M) which are G-stable i.e., $P(X) = P(VXV^{-1})$ for all V in G. S(G, M) will be called sufficient if for any positive X in M, P(X) = 0 for all P in S(G, m) implies X = 0.

THEOREM 3. Suppose M has a faithful, normal, semi-finite trace; and suppose S(G, M) is sufficient. Then there exists a faithful, normal $\mathfrak{U}(N^{cc})$ -stable expectation of M on N^c .

COROLLARY. With the above hypothesis, if M is of type I so is N^c .

Now the following uniqueness theorem can be stated:

THEOREM 4. Assume the following conditions to hold:

- (1) $N' \cap M \subset N$,
- (2) N is finite,
- (3) M is semifinite.

Then there exists at most one normal expectation of M in N.

In what follows \otimes will mean tensor product. An ampliation of M in $\mathfrak{L}(h \otimes k)$ where h is the Hilbert space on which M acts and k is any Hilbert space is defined to be the map which sends X into $X \otimes I_k$ where X is in M and I_k is the identity map on K. Let T_1 and T_2 be two bounded maps acting on two Hilbert spaces h_1 and h_2 . T_1 and T_2 are called spatially isomorphic if there exists an isometry V of h_1 on h_2 such that $T_1 = V * T_2 V$.

THEOREM 5. There exists an ampliation of M in $\mathfrak{L}(h \otimes k)$ such that if N is any von Neumann subalgebra of M which is the range of a faithful, normal expectation Φ , then there exists an isometry V in the commutant of $N \otimes I_k$ such that $\Phi \otimes I_k$ is spatially isomorphic via V to the identity map, i.e. $\Phi(X \otimes I_k) = V(X \otimes I_k) V^*$, $VV^* = I$. On putting $V^*V = P$ then P is in the commutant of $N \otimes I_k$ and

$$(\Phi \otimes I_k)(X \otimes I_k)P = P(X \otimes I_k)P;$$

for all positive $X \otimes I_k$, $(X \otimes I_k)P = 0$ implies $X \otimes I_k = 0$.

This theorem essentially states that by an ampliation a faithful normal expectation carries over to a map spatially isomorphic with the identity map. Moreover the ampliation is independent of the particular expectation.

- 3. Remarks. (a) The result of Theorem 5 is an improvement of a result contained in [2]. In [2] the case when M was finite and countably decomposable was considered.
- (b) The proof of Theorem 3 is accomplished by use of the machinery developed in [1]. Central to the proof is a result by Sakai [3] which says that if M_p is uniformly separable, then M_p is finitely generated as an algebra. Finally a result by Tomiyama in [7] will be used.
- (c) In [4] J. Schwartz defined maps that are not necessarily stable. By use of two results of [6] the corollary to Theorem 3 follows.
- (d) In [9] Umegaki has studied uniqueness of expectations in case M is finite and countably decomposable.
- (e) The proof of Theorem 5 depends on the Stinespring construction [5] and on a result by Tomiyama [8]. In [2] Nakamura, Takesaki, Umegaki study the case when M is finite, and the present result subsumes theirs.

The results of this paper are related to, but not subsumed under the results of [10]. The complete details of the above results will be published elsewhere.

BIBLIOGRAPHY

- 1. W. B. Arveson, Analyticity in operator algebras, Amer. J. Math. 84 (1967), 578-642.
- 2. M. Nakamura, M. Takesaki and H. Umegaki, A remark on the expectations of operator algebras, Kodai Math. Sem. Rep. 12 (1960), 82-89.
- 3. S. Sakai, Weakly compact operators in operator algebras, Pacific J. Math. 14 (1964), 659-664.
- 4. J. Schwartz, Two finite, nonhyperfinite, nonisomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19-26.
- 5. W. F. Stinespring, Positive functions on C* algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
- 6. J. Tomiyama, On the projection of norm one in W* algebras. III, Proc. Japan Acad. 11 (1959), 125-129.
- 7. ——, On the product projection of norm one in the direct product of operator algebras, Proc. Japan. Acad. 11 (1959), 305-313.
- 8. ——, A remark on the invariance of W* algebras, Tôhoku Math. J. 10 (1958), 37-41.
- 9. H. Umegaki, Conditional expectation in an operator algebra, Tôhoku Math. J. 6 (1954), 177-181.
- 10. ——, Conditional expectation in an operator algebra. III, Kōdai Math. Sem. Rep. 11 (1959), 51-64.

CARNEGIE-MELLON UNIVERSITY