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1. Introduction. In a recent paper, G. R. Sell [5], [6], has de­
veloped methods which allow one to apply the theory of topological 
dynamics to a very general class of nonautonomous ordinary differ­
ential equations. The purpose of this note is to illustrate how the 
methods of Sell can be extended to nonlinear Volterra integral equa­
tions of the form 

(1) x(t) = f(t) + f a(t, s)g(x(s), s)ds. 
«/ o 

A complete discussion of our results along with the proofs of the 
theorems noted here will appear in [3] and [4]. In this note we shall 
restrict ourselves to a description of the semiflow generated by (1), 
and we do this in the case where x, ƒ, a and g are real-valued. 

Because of the generality of our methods, they can be applied to 
many problems. Some of these applications are treated in [4]. We 
shall illustrate our techniques by analyzing a problem of J. Levin [ l ] 
in §5. 

2. Construction of the semiflow. A flow is defined to be a mapping 
w: XXR—+X, where X is a topological space and R the reals, that 
satisfies (i) ir{x, 0) = x, (ii) 7r(7r(x, /), s) =7r(x, t+s) and (iii) w is con­
tinuous. A (local) flow was defined in [5], and for this note we need 
the concept of a (local) semiflow, in which we restrict t to be non-
negative. A local flow differs from a flow in the sense that motions 
ir(x, t) may fail to exist for all tirrçe /. We refer the reader to [5] and 
[7] for details. 

For Eq. (1), the semiflow is constructed as follows: Let <i>(t) 
=<£(ƒ, g, a; t) denote the solution of (1). Under hypotheses on ƒ, g 
and a which are stated below, it is shown in [3], that 0 is uniquely 
determined and depends continuously on ƒ, g, a and t. Now define 
the function TTf=Tr(f, g, a) by 
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(2) TTf(6) - f(r + 6) + f 'o(r + 9, *)*(#(*), s)ds 
•^ 0 

for 0 ^ 0 and r in the interval of definition of <£. Define gT and aT by 

aT(/, s) = a(r + t, T + s) 

for T ̂  0, 0 ^ 5 g J < oo and all #. A topological space X, which is de­
fined below, consists of ordered triples (ƒ, g, a), and the mapping w 
is defined by 

(3) *(f, g, a; r) « (TV, fr, a,), (r è 0). 

Our object is to show that the mapping T defines a semiflow. Most 
of the defining conditions are easily checked. The continuity of w is 
the only difficult item, and this, of course, depends on the topology 
o n l . 

3. Admissible and compatible topologies. Let e = <B(i?+, R) denote 
the space of real-valued continuous functions defined on i?+ . Assume 
that 6 has the topology of uniform convergence on compact sets. We 
shall assume that the term fit), from (1), lies in <B. The terms g(x, t) 
will be assumed to be in a linear topological space Q, and the kernels 
a(t, s) belong to a linear topological space Ofc. 

DEFINITIONS. The space g is said to be admissible if the mapping 

(g, r) -» gT 

of QXR+ into g is continuous. The space & is said to be admissible if 
the two mappings 

(a, r) —» aT and r —» a(r + •, •) 

of CtX-R+ into Ct and R+ into 0t are continuous. We say that the pair 
(g, Ct) is compatible if 

(1) Both g and ft are admissible and 
(2) For every/G<3, gGg, a£ (£ , Eq. (1) admits a unique solution 

<t>(J, g, a; t) and furthermore 0 depends continuously o n / , g, a and /. 

THEOREM 1. Let (g, Cfc) be compatible linear topological spaces. Then 
the mapping ir given by (3) defines a semiflow on X = GXgX Œ. 

The question of admissible and compatible spaces is discussed at 
length in [3] and [4]. We present here just two examples of com­
patible spaces. These are chosen because many applications fit into 
this format. 
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The space $p, l<p<&. The collection of all measurable functions 
g(x, t): RXR+—*R such that for each compact set KQR there exist 
locally Lp functions m(t) and k(t) such that 

| g(x, t) | ^ mit), 

I «(*,*) - *(y,01 ^K0\x-y\ 

for all x, y in K and t in R+. We define a topology on gp by saying 
that a generalized sequence {gn} converges to g if for every compact 
interval IQR+ and every compact set 3CC<B(I, R) (where (B(J, i?) 
denotes the Banach space of real-valued continuous functions defined 
on / ) one has 

I | gn(x(s), s) - g(x(s), s) I pds -» 0 

uniformly for #(•) in 3C. 
Tfe space 9oo. The collection of all continuous functions g(x, t): 

RXR+—>R such that for each compact set KCZR there exists a con­
tinuous function &(/) such that 

U(*,')-«GsOl â *(0|*-y| 
for all x, y in K and / in i?+ . The topology on g^ is the topology of 
uniform convergence on compact sets. 

The space Ctp, Kp< oo. The collection of all real-valued measur­
able functions a(t, s) defined for 0^s^t< oo such that (i) for each 
t, a(t, s) is locally Lq in s where p"1+i~1 = 1 and (ii) for each compact 
interval ICZR+ and every t^O one has 

f | a{t + hy s) - ait, s) \qds -* 0 

as h—»0. The topology on Ct̂  is defined by saying that a generalized 
sequence {an} converges to a if for every compact interval IC.R+ 

one has 

I | an(t, s) - a(t9s)\9ds-+Q 

uniformly for t in compact sets. 
The space (ft*,. The collection of all real-valued measurable functions 

a(t, s) defined for 0 g s 5 ^ < oo and such that (i) for each /, a(t, s) is 
locally L\ in s and (ii) for each compact interval IQR+ the mapping 
t—>a(tf •) is continuous in the weak*-topology on G (I, i?)*. The 
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topology for Q^, which is a weak topology, is defined by saying that 
a generalized sequence {an} converges to a if for every compact inter­
val IC.R+ and every #(-)(E6(J, R) one has 

I [an(t, s) — a(t, s)]x(s)ds —> 0 

uniformly for t in compact sets. 

THEOREM 2. The spaces (gp, dp) and (g*, &J) are compatible. 

Other topologies are given in [3] and [4]. An interesting feature 
that arises in our study is that as one weakens the topology on the 
kernels a(t> s), it is necessary to strengthen the topology on the terms 
g(x, t) in order to preserve the compatibility of the pair (g, a ) . We 
refer the reader to the main papers for details. 

4. Compact motions and limiting equations. Two of the basic 
problems in applying topological dynamics are to determine conditions 
under which a motion T(X} t) is compact, that is, w(x, t) remains in a 
compact set for all / ^ 0 , and then to analyze the asymptotic behavior 
of w(x, t) in terms of the co-limit set. In [4] sufficient (and sometimes 
necessary) conditions are given in order that the motions gT and ar be 
compact in g and Œ. Because of lack of space, we will not formulate 
these results here. As for the motion 7r(/, g} a; r ) , one can prove the 
following result: 

THEOREM 3. Let (g, Cfc) be a compatible pair and assume that the 
motions gt in g and at in d are compact. If the solution <f>(t) =c6(/, g, a; t) 
of (1) is uniformly continuous and lies in a compact set for allt^0> then 
the motion ir(J1 g, a; t) remains in a compact set for all t è 0. 

The problem here is to show that the family { TTf : r ^ 0} lies in a 
compact set in 6. This follows from the notion of compatibility and 
the fact that Trf(0) can be formulated as 

(4) Trf(B) - 4>{r + 6) - f aT(0, s)gr(4>r(s), s)ds. 

Once one knows that a motion 7r(/, g, a; r) is compact, then its 
co-limit set Î2 is compact and nonempty. A typical point (F*, g*t a*) 
in 0 is characterized as the limit of w(J9 g, a; r») for some sequence 
Tn-*°°. One can show that in this case, the translates <t>(t+rn) con­
verge uniformly for t in compact sets to a function $*(£). Under 
appropriate integrability conditions on a(t, s) and g(x(s), s) one can 
show that 0*(/) satisfies 
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(5) **(0 - ƒ*(/) + f ' a*(t, s)g*(4>*(s), s)ds, 

where jfrn—•ƒ* in 6. In other words, the function F* is of the form 

F*(0) = ƒ*(«) + f „*(*, *)«*(**(*), *)&. 

This generalizes a result of R. K. Miller [2]. 

5. An application. The following problem, which is a generalization 
of a problem of J. Levin [ l ] follows easily with our techniques. 

THEOREM 4. Consider the equation 

(6) x(t) - ƒ(/) - C {a(f-s) + b^ s)}g(x(s))ds 
J o 

where 
(1) fit) is continuous f or t^0 and fit)—>f o as t—><*>, 
(2) a ( r ) e e ' [ 0 , oo)ni,i(0, » ) andair)^0, 
(3) a ' ( r ) ^ 0 awd a ' ( r ) ^ 0 0W any interval [0, r ] , T > 0 , 
(4) JGCfcoo a#d 7^+1 | ifa+r» $)|ds—»0, as T—»co, uniformly for r in 

compact sets, 
(5) g(#) w locally Lipschitzian and strictly increasing» Assume that 

the solution </>(t) = 0 ( / , g, a; /) 0/ (6) w bounded and uniformly continuous 
for all / è 0 and fe/ x0 &e the solution of 

w&ere 4̂ = / ^ air)dr. Then 0 (/)—>#<) #s /—»<*>. 
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