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1. Introduction. In a recent paper, G. R. Sell [5], [6], has de-
veloped methods which allow one to apply the theory of topological
dynamics to a very general class of nonautonomous ordinary differ-
ential equations. The purpose of this note is to illustrate how the
methods of Sell can be extended to nonlinear Volterra integral equa-
tions of the form

) 20 =0+ [ "a(t, )g(a(s), )ds.

A complete discussion of our results along with the proofs of the
theorems noted here will appear in [3] and [4]. In this note we shall
restrict ourselves to a description of the semiflow generated by (1),
and we do this in the case where %, f, ¢ and g are real-valued.

Because of the generality of our methods, they can be applied to
many problems. Some of these applications are treated in [4]. We
shall illustrate our techniques by analyzing a problem of J. Levin [1]
in §5.

2. Construction of the semiflow. A flow is defined to be a mapping
m: X XR—X, where X is a topological space and R the reals, that
satisfies (i) w(x, 0) =x, (i) w(r(x, £), s) =w(x, t-+s) and (iii) 7 is con-
tinuous. A (local) flow was defined in [5], and for this note we need
the concept of a (local) semiflow, in which we restrict ¢ to be non-
negative. A local flow differs from a flow in the sense that motions
w(x, §) may fail to exist for all time ¢. We refer the reader to [5] and
[7] for details.

For Eq. (1), the semiflow is constructed as follows: Let ¢(f)
=¢(f, g, a; t) denote the solution of (1). Under hypotheses on f, g
and a which are stated below, it is shown in [3], that ¢ is uniquely
determined and depends continuously on f, g, ¢ and ¢. Now define
the function T.f=T,(f, g, a) by
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@) Tf®) = (= + 6) + f “a(r + 0, )g(@(s), 5)ds

for =0 and 7 in the interval of definition of ¢. Define g, and a, by

& (%, 5) = g(x, 7+ 1)
a(t,s) =a(r+t,7+5)

for =0, 0=s=<t< « and all x. A topological space X, which is de-
fined below, consists of ordered triples (f, g, @), and the mapping =
is defined by

3) =(f, g a; ™) = (T, &, @), (rz0).

Our object is to show that the mapping 7 defines a semiflow. Most
of the defining conditions are easily checked. The continuity of = is
the only difficult item, and this, of course, depends on the topology
on X.

3. Admissible and compatible topologies. Let € =C(R*, R) denote
the space of real-valued continuous functions defined on R+, Assume
that € has the topology of uniform convergence on compact sets. We
shall assume that the term f(¢), from (1), lies in @. The terms g(x, £)
will be assumed to be in a linear topological space G, and the kernels
a(t, s) belong to a linear topological space Q.

DEeFINITIONS. The space G is said to be admissible if the mapping

(g, ™) — &

of g X Rt into G is continuous. The space @ is said to be admissible if
the two mappings

(a,7)—a, and 7—a(r+-, )

of @ X R* into @ and R* into @ are continuous. We say that the pair
(g, @) is compatible if

(1) Both G and @ are admissible and

(2) For every fE@, g&G, e €@, Eq. (1) admits a unique solution
o(f, g, a; t) and furthermore ¢ depends continuously on f, g, ¢ and ¢.

THEOREM 1. Let (G, @) be compatible linear topological spaces. Then
the mapping w given by (3) defines a semiflow on X =CXGXG.

The question of admissible and compatible spaces is discussed at
length in [3] and [4]. We present here just two examples of com-
patible spaces. These are chosen because many applications fit into
this format.
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The space Gy, 1 <p < 0. The collection of all measurable functions
g(x, t): RXR+t—R such that for each compact set K CR there exist
locally L, functions m(¢) and k() such that

| g(x, 1| = m(®),
| g(x, ) — g3, | < k()| & — »]

for all x, y in K and ¢ in R+, We define a topology on G, by saying
that a generalized sequence {g.} converges to g if for every compact
interval ICR* and every compact set X CC(I, R) (where C(Z, R)
denotes the Banach space of real-valued continuous functions defined
on I) one has

J Va0, 9) = etat6), 9| 235 0

uniformly for x(-) in X.

The space G,. The collection of all continuous functions g(x, £):
RXR+t—R such that for each compact set K CR there exists a con-
tinuous function k(f) such that

| g(x, ) — g(v, | < k(@) | = — 5]

for all x, y in K and ¢ in R+. The topology on G, is the topology of
uniform convergence on compact sets.

The space @y, 1 <p< . The collection of all real-valued measur-
able functions a(¢, s) defined for 0 <s=<{< « such that (i) for each
t, a(t, s) is locally L, in s where p~14-¢—1=1 and (ii) for each compact
interval I CR* and every {=0 one has

f | a(t + h,s) — al, s)l“ds——-)O

as h—0. The topology on @, is defined by saying that a generalized
sequence {a,.} converges to a if for every compact interval I CR*
one has

f I a.(t, s) — a(t, s) l"ds -0
I

uniformly for ¢ in compact sets.

The space Q.. The collection of all real-valued measurable functions
a(t, s) defined for 0<s=<i¢< » and such that (i) for each ¢, a(t, s) is
locally L, in s and (ii) for each compact interval I CR* the mapping
t—a(t, -) is continuous in the weak*-topology on €(I, R)*. The
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topology for @, which is a weak topology, is defined by saying that
a generalized sequence {an} converges to a if for every compact inter-
val ICR* and every x(-) E€C(I, R) one has

[ L, 9 = att, 91stas 0
I

uniformly for ¢ in compact sets.
THEOREM 2. The spaces (Sp, @p) and (Gu, Q) are compatible.

Other topologies are given in [3] and [4]. An interesting feature
that arises in our study is that as one weakens the topology on the
kernels a(t, s), it is necessary to strengthen the topology on the terms
g(x, t) in order to preserve the compatibility of the pair (g, @). We
refer the reader to the main papers for details.

4. Compact motions and limiting equations. Two of the basic
problems in applying topological dynamics are to determine conditions
under which a motion 7 (x, £) is compact, that is, w(x, ) remains in a
compact set for all =0, and then to analyze the asymptotic behavior
of 7(x, £) in terms of the w-limit set. In [4] sufficient (and sometimes
necessary) conditions are given in order that the motions g, and a. be
compact in § and Q. Because of lack of space, we will not formulate
these results here. As for the motion 7 (f, g, a; 7), one can prove the
following result:

THEOREM 3. Let (G, @) be a compatible pair and assume that the
motions g,in Gand a, in Q are compact. If the solution ¢ () =¢(f, g,a; )
of (1) is uniformly continuous and lies in a compact set for all t=0, then
the motion w(f, g, a; t) remains in a compact set for all t = 0.

The problem here is to show that the family {T,f : 120} lies in a
compact set in C. This follows from the notion of compatibility and
the fact that 77,f(0) can be formulated as

[}
@ m@=¢@+m—ﬁm@»mwa»n

Once one knows that a motion «(f, g, a; 7) is compact, then its
w-limit set Q is compact and nonempty. A typical point (F*, g*, a*)
in @ is characterized as the limit of w(f, g, @; 7.) for some sequence
7,— . One can show that in this case, the translates ¢(¢-+7,) con-
verge uniformly for ¢ in compact sets to a function ¢*(f). Under
appropriate integrability conditions on a(¢, s) and g(x(s), s) one can
show that ¢*(#) satisfies
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t
®) #0 =10+ [ o986 6,9
where f,,—f* in €. In other words, the function F* is of the form
0
PO = 1O + [ %6, 98" *6), 9ds.

This generalizes a result of R. K. Miller [2].

5. An application. The following problem, which is a generalization
of a problem of J. Levin [1] follows easily with our techniques.

THEOREM 4. Consider the equation
t

®) 20) = 10) = [ ot = ) + 86, 9} g(w(sds
[

where

(1) f() is continuous for t=0 and f(t)—fq as t— o,

(2) a(r)Ee'[0, ©)NLy(0, ») and a(r) 20,

(3) a’(r) =0 and a'(r) £0 on any interval [0, T], T>0,

(4) bEQ., and [1|b(s+r, 5)|ds—0, as 7—> o, uniformly for r in
compact sets,

(5) g(x) is locally Lipschitzian and strictly increasing. Assume that
the solution ¢ (t) =¢(f, g, a; t) of (6) is bounded and uniformly continuous
for all t=0 and let x, be the solution of

%o = fo — Ag(xo),
where A =[5 a(r)dr. Then ¢(t)—xo as t— .
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