TOEPLITZ AND WIENER-HOPF OPERATORS IN $H^{\infty}+C$

BY R. G. DOUGLAS

Communicated by Paul R. Halmos, April 26, 1968

1. Let L^p denote the Lebesgue space for the normalized measure $(1/2\pi)d\theta$ defined on the unit circle $T = \left\{e^{i\theta} \middle| 0 \le \theta \le 2\pi\right\}$, let H^p denote the corresponding Hardy space of functions in L^p which have zero negative Fourier coefficients and let P be the projection of L^p onto H^p . For ϕ in L^∞ we define the Toeplitz operator T_ϕ on H^p by $T_\phi f = P(\phi f)$ for f in H^p . It is clear that T_ϕ is bounded and this class of operators has been much studied.

Much of the interest in Toeplitz operators has been directed to the determination of their spectra. For ϕ in H^{∞} it was shown by Wintner in [12] that the spectrum $\sigma(T_{\phi})$ of T_{ϕ} is the closure of the range of the analytic extension of ϕ to the unit disk D. For ϕ in the space C of continuous functions on T it was shown by Devinatz [4] (see [10] for earlier results) that $\sigma(T_{\phi})$ consists of the range of ϕ on T along with those λ for which the index of λ with respect to the curve determined by ϕ is different from zero. In this note we describe $\sigma(T_{\phi})$ for ϕ in the linear span of H^{∞} and C. (This manifold is actually a closed subalgebra of L^{∞} .) We show that such a T_{ϕ} is invertible if its harmonic extension $\hat{\phi}$ to D is bounded away from zero on a neighborhood of T and the index of the curve $\hat{\phi}(Re^{i\theta})$ is zero for R sufficiently large. Our technique can be viewed as an extension of that used in [6] to determine $\sigma(T_{\phi})$ for ϕ in C.

In §3 we indicate how to extend our results to determine the index of a certain class of vector-valued Toeplitz operators (or systems of Toeplitz operators). In this we generalize certain of the results of Gohberg and Kreın in [7]. We conclude by describing how our results can be applied to the study of Wiener-Hopf operators both in the scalar case and the vector-valued case using the isomorphism exhibited in [5].

We only outline our proofs and complete details will appear elsewhere.

2. We begin by recalling some facts about Fredholm operators. Let $\mathfrak L$ denote the algebra of bounded operators on H^2 , $\mathfrak K$ the uniformly closed two-sided ideal of compact operators in $\mathfrak L$, and π the homomorphism of $\mathfrak L$ onto $\mathfrak L/\mathfrak K$. An operator A in $\mathfrak L$ is said to be a Fredholm operator if A has a closed range and both a finite dimen-

sional kernel and cokernel. It is known [1] that this is equivalent to $\pi(A)$ being an invertible element of $\mathfrak{L}/\mathfrak{K}$. If A is a Fredholm operator, then the analytical index $i_a(A)$ is defined $i_a(A) = \dim [\ker A] - \dim [\ker A^*]$, where ker () denotes the kernel.

One reason the notion of index is important for determining the invertibility of Toeplitz operators is the following fact proved by Coburn [2].

LEMMA 1. For ϕ in L^{∞} either ker $T_{\phi} = (0)$ or ker $T_{\phi}^* = (0)$.

Thus, if T_{ϕ} is known to be a Fredholm operator, then T_{ϕ} is invertible if and only if $i_a(T_{\phi}) = 0$. We shall show for ϕ in $H^{\infty} + C$ that T_{ϕ} is a Fredholm operator if and only if ϕ is an invertible element of the algebra $H^{\infty} + C$. That $H^{\infty} + C$ is an algebra is a result due to Sarason [9] which we state as a lemma.

LEMMA 2. The linear span of H^{∞} and C is a closed subalgebra of L^{∞} . Moreover, the maximal ideal space of $H^{\infty}+C$ is the maximal ideal space of H^{∞} with the unit disk removed.

Sarason shows in [9] that the linear span of H^{∞} and C is closed. The observation that the "closure" of $H^{\infty}+C$ coincides with the closed subalgebra of L^{∞} generated by H^{∞} and \bar{z} allows us to conclude that $H^{\infty}+C$ is an algebra and to identify its maximal ideal space. The latter is a special case of the following proposition which is itself of interest. Let X be a compact Hausdorff space and C be a uniformly closed subalgebra of the space C(X) of continuous complex functions on X which separates points and contains the constants. Let C be a function on C having modulus one in C and let C denote the closed subalgebra of C generated by C and C. Then the maximal ideal space for C denote the closed from that of C by deleting the open set on which the Gelfand transform of C has modulus less than one.

Now let G denote the uniformly closed subalgebra of L generated by the operators T_{ϕ} with ϕ in $H^{\infty}+C$. Note that G is not a C^* -algebra.

Lemma 3. The algebra \mathfrak{g} contains \mathfrak{K} as a two-sided ideal and $\mathfrak{g}/\mathfrak{K}$ is isometrically isomorphic to $H^{\infty}+C$.

PROOF. Since $\mathcal G$ contains the C^* -algebra generated by the unilateral shift of multiplicity one, it follows from [3] that $\mathcal G$ contains $\mathcal K$ and $\mathcal K$ is an ideal in any algebra of $\mathcal E$ containing it. If p and q are trigonometric polynomials and ψ and ζ are functions in H^∞ , then a straightforward computation shows that the commutator of $T_{\psi+p}$ and $T_{\xi+q}$ is compact. Thus the *linear* span of the operators of the form $T_{\phi}+K$, where ϕ is in $H^\infty+C$ and K is in $\mathcal K$, is an algebra. That it is in fact a

closed algebra follows from the inequality $||T_{\phi}+K|| \ge ||T_{\phi}||$ proved in [2]. Therefore, g/\mathcal{K} is commutative and the mapping $T_{\phi}+K\leftrightarrow\phi$ is an isometrical isomorphism of g/\mathcal{K} onto $H^{\infty}+C$.

COROLLARY. If ϕ is in $H^{\infty}+C$, then $T_{\phi}-\lambda$ is a Fredholm operator if and only if $\phi-\lambda$ is an invertible element of $H^{\infty}+C$.

PROOF. If $\phi - \lambda$ is an invertible element of $H^{\infty} + C$, then it follows from the preceding lemma that $T_{\phi} - \lambda$ is a Fredholm operator. Conversely, if $T_{\phi} - \lambda$ is a Fredholm operator, then $\pi(T_{\phi} - \lambda)$ is an invertible element of $\mathfrak{L}/\mathfrak{K}$ and we must show that its inverse is in $\mathfrak{g}/\mathfrak{K}$. This can be shown for a ϕ in H^{∞} and the problem for an arbitrary ϕ in $H^{\infty} + C$ is solved by approximating ϕ by a function of the form $\mathbf{z}^{-n}\psi$ where ψ is in H^{∞} .

The preceding result determines when $T_{\phi}-\lambda$ is a Fredholm operator. This combined with Lemma 1 will enable us to determine $\sigma(T_{\phi})$ when we have some effective method of determining the index of $T_{\phi}-\lambda$. If ϕ is continuous, the index of $T_{\phi}-\lambda$ is equal to the negative of the topological index $i_t(\phi, \lambda)$ of the curve determined by ϕ with respect to λ (cf. [6]). In the case at hand we use the index of the curves $\hat{\phi}(re^{i\theta})$ where $\hat{\phi}$ is the harmonic extension of ϕ to the interior of D. To this end we need to relate the invertibility of ϕ in $H^{\infty}+C$ to the function $\hat{\phi}$ on D.

LEMMA 4. A necessary and sufficient condition that ϕ in $H^{\infty}+C$ be invertible is that ϕ^{-1} be in L^{∞} and for each $\epsilon>0$, there exists $\delta>0$ so that $|\hat{\phi}(re^{i\theta})| \geq 1/||\phi^{-1}||_{\infty} - \epsilon$ for $1>r \geq 1-\delta$.

PROOF. We again approximate ϕ by a function of the form $z^{-n}\psi$ with ψ in H^{∞} and analyze the inner and outer factors of ψ .

LEMMA 5. If $T_{\phi} - \lambda$ is a Fredholm operator, then $i_a(T_{\phi} - \lambda) = -\lim_{R \to 1^-} i_t(\hat{\phi}(Re^{i\theta}), \lambda)$.

PROOF. From the Corollary and Lemma 4 it follows that for $T_{\phi} - \lambda$ a Fredholm operator there exists 0 < R < 1 so that $\hat{\phi}(re^{i\theta}) \neq \lambda$ for $1 > r \geq R$. Since $\hat{\phi}$ is continuous on D we then have that $i_t(\hat{\phi}(re^{i\theta}), \lambda)$ is constant for $r \geq R$ so that the limit exists. The proof is now accomplished with the same technique used in the preceding proof.

We can now determine the spectrum of T_{ϕ} for ϕ in $H^{\infty}+C$.

THEOREM. For ϕ in $H^{\infty}+C$ we have T_{ϕ} is invertible if and only if

$$\lim_{R\to 1^-}\inf_{0\leq \theta<2\pi;\ R\leq r<1}\left|\hat{\phi}(re^{i\theta})\right|=\eta>0$$

and

$$\lim_{R\to 1^-} i_t(\hat{\phi}(Re^{i\theta}), 0) = 0.$$

COROLLARY. For ϕ in $H^{\infty}+C$ we have

$$\begin{split} \sigma(T_{\phi}) &= \big\{ \lambda \, \big| \lim_{R \to 1^{-}} \inf_{0 \leq \theta < 2\pi; R \leq < r_{1}} \, \big| \, \hat{\phi}(re^{i\theta}) - \lambda \, \big| = 0 \big\} \\ &\qquad \cup \, \big\{ \lambda \, \big| \lim_{R \to 1^{-}} i_{t}(\hat{\phi}(Re^{i\theta}), \lambda) \neq 0 \big\}. \end{split}$$

We make several comments before continuing to the vector valued case. Firstly, although the statement of the Theorem makes sense for an arbitrary ϕ in L^{∞} the Theorem is not valid in this generality. Secondly, $\lim_{r\to 1^-} i_t(\hat{\phi}(re^{i\theta}), \lambda) = 0$ does not imply that T_{ϕ} is invertible even for ϕ in H^{∞} . Thirdly, Widom has shown that $\sigma(T_{\phi})$ is connected for ϕ in L^{∞} (cf. [11]). We remark that it follows from the Corollary to Lemma 3, Lemma 1 and the fact that the maximal ideal space of $H^{\infty}+C$ is connected [8] that $\sigma(T_{\phi})$ is connected for ϕ in $H^{\infty}+C$. Lastly, using the identification of Wiener-Hopf operators with Toeplitz operators (cf. [5]), our Theorem can be used to determine the invertibility of a certain class of Wiener-Hopf operators.

We now describe the extension of our results to the vector valued case. Let \mathfrak{E} be a finite dimensional Hilbert space and $\mathfrak{L}(\mathfrak{E})$ the ring of bounded operators on \mathfrak{E} . Let $L^2_{\mathfrak{E}}$ denote the Hilbert space of measurable \mathfrak{E} -valued functions on T having square integrable norm, $H^2_{\mathfrak{E}}$ the corresponding Hardy space of functions in $L^2_{\mathfrak{E}}$ which have zero negative Fourier coefficients, and P the projection of $L^2_{\mathfrak{E}}$ onto $H^2_{\mathfrak{E}}$. Further, let $L^\infty_{\mathfrak{E}(\mathfrak{E})}$ denote the ring of bounded measurable $\mathfrak{L}(\mathfrak{E})$ -valued functions on T and $H^\infty_{\mathfrak{E}}$ the Hardy space of functions in $L^\infty_{\mathfrak{E}(\mathfrak{E})}$ with zero negative Fourier coefficients. For Φ in $L^\infty_{\mathfrak{E}(\mathfrak{E})}$ we define the Toeplitz operator T_Φ on $H^2_{\mathfrak{E}}$ by $T_\Phi f = P(\Phi f)$, where Φf denotes the pointwise product. Finally, let $C_{\mathfrak{L}(\mathfrak{E})}$ denote the space of continuous $\mathfrak{L}(\mathfrak{E})$ -valued functions on T.

THEOREM. If Φ is in $H_{\mathfrak{LE}}^{\infty} + C_{\mathfrak{LE}}$ then T_{Φ} is a Fredholm operator if and only if

$$\lim_{R\to 1^-}\inf_{0\,\leq\,\theta\,<2\pi\,;R\,\leq\,r\,<1}\big|\,(\det\Phi)\,\hat{\,}(Re^{i\theta})\,\big|\,=\,\eta\,>\,0$$

and this case

$$i_a(T_{\Phi}) = - \lim_{R \to 1^-} i_t((\det \Phi)^{\hat{}}(Re^{i\theta})).$$

PROOF. We briefly describe the changes necessary in the proof given for the scalar case. We define G as the closed subalgebra of $\mathcal{L}(H_{\mathbb{C}}^2)$

generated by the T_{Φ} for Φ in $\mathbf{H}_{\mathcal{L}(\mathcal{E})}^{\infty} + C_{\mathcal{L}(\mathcal{E})}$ and show \mathcal{G} contains as an ideal, the ring \mathcal{K} of compact operators on $\mathbf{H}_{\mathfrak{C}}^{2}$. Further, we show that \mathcal{G}/\mathcal{K} is isometrically isomorphic to the closed subalgebra $\mathbf{H}_{\mathcal{L}(\mathcal{E})}^{\infty} + C_{\mathcal{L}(\mathcal{E})}$ of $\mathbf{L}_{\mathcal{L}(\mathcal{E})}^{\infty}$. Again we show that $\pi(T_{\Phi})$ is invertible in \mathcal{G}/\mathcal{K} if and only if it is invertible in \mathcal{L}/\mathcal{K} . Thus we find that T_{Φ} is a Fredholm operator if and only if $\det(\Phi)$ is an invertible element of $H^{\infty}+C$. Lastly, the index of T_{Φ} is computed using the fact that the determinant defines an isomorphism from the first homotopy group of the general linear group for \mathfrak{E} onto the first homotopy group of the space of nonzero complex numbers.

Again using the isomorphism exhibited in [5] we can identify the operator T_{Φ} with a matrix valued Wiener-Hopf operator. In this context Gohberg and Kreın proved the preceding theorem for Φ in a certain subset of $C_{\mathfrak{L}(8)}$.

Complete details will appear elsewhere along with extensions of the preceding results to the case of an infinite dimensional space & as well as to Toeplitz operators defined on certain other Banach spaces.

BIBLIOGRAPHY

- 1. F. V. Atkinson, The normal solubility of linear equations in normed spaces, Mat. Sb. 28 (70) (1951), 3-14. (Russian)
- 2. L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- 3. ——, The C*-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722-726.
- 4. A. Devinatz, Toeplitz operators on H² spaces, Trans. Amer. Math. Soc. 112 (1964), 304-317.
- 5. —, "On Wiener-Hopf operators" in Functional analysis, edited by B. Gelbaum, Thompson, Washington, D. C., 1967.
- 6. R. G. Douglas, On the spectrum of a class of Toeplitz operators, J. Math. Mech. (to appear).
- 7. I. C. Gohberg and M. G. Krein, Systems of integral equations on the half-line with kernels depending on the difference of the arguments, Uspehi Mat. Nauk 13 (1958), No. 2 (80), 3-72; English transl., Amer. Math. Soc. Transl. (2) 14 (1960), 217-287.
- 8. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 9. D. E. Sarason, Generalized interpolation on H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179-203.
- 10. H. Widom, "Toeplitz matrices" in *Studies in real and complex analysis*, Math. Assoc. Amer., Buffalo, N. Y., and Prentice-Hall, Englewood Cliffs, N. J., 1965.
 - 11. —, Toeplitz operators on H_p , Pacific. J. Math. 19 (1966), 573–582.
- 12. A. Wintner, Zur Theorie der beschränkten Bilinearformen, Math. Z. 30 (1929). 228-282.

University of Michigan