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1. Let Z> denote the Lebesgue space for the normalized measure 
(l/27r)dd defined on the unit circle r = {eid\ O^0^27r} , let Hp denote 
the corresponding Hardy space of functions in Z> which have zero 
negative Fourier coefficients and let P be the projection of L2 onto 
H%. For 0 in L°° we define the Toeplitz operator T+ on H2 by T^f 
— P(<f>f) for ƒ in H2. I t is clear that T<f> is bounded and this class of 
operators has been much studied. 

Much of the interest in Toeplitz operators has been directed to the 
determination of their spectra. For <£ in ü00 it was shown by Wintner 
in [12] that the spectrum <r(T^) of T+ is the closure of the range of the 
analytic extension of 0 to the unit disk D. For <f> in the space C of 
continuous functions on T it was shown by Devinatz [4] (see [lO] 
for earlier results) that <r(7^) consists of the range of 0 on T along 
with those X for which the index of X with respect to the curve deter­
mined by <f> is different from zero. In this note we describe <r(T<t) for 
4> in the linear span of iJ00 and C. (This manifold is actually a closed 
subalgebra of Z,00.) We show that such a T<f, is invertible if its harmonic 
extension $ to D is bounded away from zero on a neighborhood of T 
and the index of the curve $(Reid) is zero for R sufficiently large. Our 
technique can be viewed as an extension of that used in [ó] to deter­
mine <r{T<i) for <j> in C. 

In §3 we indicate how to extend our results to determine the index 
of a certain class of vector-valued Toeplitz operators (or systems of 
Toeplitz operators). In this we generalize certain of the results of 
Gohberg and Kreïn in [7]. We conclude by describing how our results 
can be applied to the study of Wiener-Hopf operators both in the 
scalar case and the vector-valued case using the isomorphism exhib­
ited in [5]. 

We only outline our proofs and complete details will appear 
elsewhere. 

2, We begin by recalling some facts about Fredholm operators. 
Let £ denote the algebra of bounded operators on H2, JC the uni­
formly closed two-sided ideal of compact operators in £, and w the 
homomorphism of £ onto <£/3C. An operator A in £ is said to be a 
Fredholm operator if A has a closed range and both a finite dimen-
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sional kernel and cokernel. I t is known [ l ] that this is equivalent to 
w(A) being an invertible element of «C/3C. If A is a Fredholm operator, 
then the analytical index ia(A) is defined ia(A) =dim [ker A] 
—dim [ker A*], where ker ( ) denotes the kernel. 

One reason the notion of index is important for determining the 
invertibility of Toeplitz operators is the following fact proved by 
Coburn [2]. 

LEMMA 1. For </> in L00 either ker T* = (0) or ker 2^ = (0). 

Thus, if T<f> is known to be a Fredholm operator, then T+ is inverti­
ble if and only if ia(T+) = 0. We shall show for <t> in H" + C that T* is 
a Fredholm operator if and only if cf> is an invertible element of the 
algebra H°° + C. That H°° + C is an algebra is a result due to Sarason 
[9] which we state as a lemma. 

LEMMA 2. The linear span of H00 and C is a closed subalgebra of L00. 
Moreover, the maximal ideal space of H°° + Cis the maximal ideal space 
of H°° with the unit disk removed. 

Sarason shows in [9] that the linear span of H™ and C is closed. 
The observation that the "closure" of H°° + C coincides with the 
closed subalgebra of L00 generated by H°° and z allows us to conclude 
that H°°+C is an algebra and to identify its maximal ideal space. The 
latter is a special case of the following proposition which is itself of 
interest. Let X be a compact Hausdorff space and (X be a uniformly 
closed subalgebra of the space C(X) of continuous complex functions 
on X which separates points and contains the constants. Let 0 be a 
function on X having modulus one in Ct and let ($($) denote the closed 
subalgebra of C(X) generated by Cfc and $. Then the maximal ideal 
space for <$(#) is obtained from that of Ct by deleting the open set on 
which the Gelfand transform of <t> has modulus less than one. 

Now let 9 denote the uniformly closed subalgebra of £ generated 
by the operators T+ with cj> in H°° + C. Note that g is not a C*-algebra. 

LEMMA 3. The algebra g contains X as a two-sided ideal and g/3C is 
isometrically isomorphic to H^ + C. 

PROOF. Since g contains the C*-algebra generated by the unilateral 
shift of multiplicity one, it follows from [3] that g contains 5Z and 3C 
is an ideal in any algebra of <£ containing it. If p and q are trigono­
metric polynomials and \j/ and f are functions in H°°t then a straight­
forward computation shows that the commutator of Tf+P and Tç+q 

is compact. Thus the linear span of the operators of the form T<f>+K, 
where <£ is in H«> + C and K is in 5C, is an algebra. That it is in fact a 
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closed algebra follows from the inequality |J T"̂ -J--KTJJ è||î"V|| proved 
in [2]. Therefore, g / X is commutative and the mapping r^+i£>->0 
is an isometrical isomorphism of g/3C onto H°° + C. 

COROLLARY. If<j> is in H^ + C, then T<f>—X is a Fredholm operator if 
and only if 0 —X is an invertible element of H™ + C. 

PROOF. If 0—X is an invertible element of Jff^-f-C, then it follows 
from the preceding lemma that T<f>— X is a Fredholm operator. Con­
versely, if T^—X is a Fredholm operator, then iriT^—X) is an inver­
tible element of £/3Z and we must show that its inverse is in %/X. 
This can be shown for a 0 in H00 and the problem for an arbitrary 0 
in H°° + C is solved by approximating 0 by a function of the form 
3~n^ where \p is in ff00. 

The preceding result determines when T<f,— X is a Fredholm oper­
ator. This combined with Lemma 1 will enable us to determine cr{T^) 
when we have some effective method of determining the index of 
r^—X. If 0 is continuous, the index of T^— Xis equal to the negative 
of the topological index i«(0, X) of the curve determined by 0 with 
respect to X (cf. [ó]). In the case at hand we use the index of the 
curves $(reie) where $ is the harmonic extension of 0 to the interior 
of D. To this end we need to relate the invertibility of 0 in H™ + C to 
the function $ on D. 

LEMMA 4. A necessary and sufficient condition that 0 in H°° + C be 
invertible is that <jrl be in L00 and for each e>0 , there exists S>0 so that 
|*(r**)| àl/||HL-€.A>r l > r è l - « . 

PROOF. We again approximate 0 by a function of the form z"""^/ with 
x// in H™ and analyze the inner and outer factors of ^. 

LEMMA 5. If T^— X is a Fredholm operator, then ia(T^—\) 
= -limR^-it($(Reie),\). 

PROOF. From the Corollary and Lemma 4 it follows that for T<f> —X a 
Fredholm operator there exists 0<R<1 so that 4>(rei6)?*\ for 
l>r^R. Since $ is continuous on D we then have that it($(reie), X) 
is constant for r^R so that the limit exists. The proof is now accom­
plished with the same technique used in the preceding proof. 

We can now determine the spectrum of T$ for 0 in H°° + C. 

THEOREM. For </> in H00 + Cwe have T<f> is invertible if and only if 

lim inf | $(reie) | = 77 > 0 
R-+1- 0$e<2v',B^r<l 

and 
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lim iS(Reie), 0) « 0. 

COROLLARY. For (f> in H* + C we have 

er(ZV) = {X | lim inf | $(reie) — \ [ = 0} 
R-+1- 0£$<2ir;R£<rl 

U {\| lim iS(Reie),\) ^ 0}. 
R-+l~ 

We make several comments before continuing to the vector valued 
case. Firstly, although the statement of the Theorem makes sense 
for an arbitrary <j> in L00 the Theorem is not valid in this generality. 
Secondly, limr+i-At($(reie)t X) = 0 does not imply that T+ is invertible 
even for <j> in H00. Thirdly, Widom has shown that cr{T^) is connected 
for </> in L00 (cf. [ i l ] ) . We remark that it follows from the Corollary to 
Lemma 3, Lemma 1 and the fact that the maximal ideal space of 
H°° + C is connected [8] that <r{T+) is connected for <j> in H" + C. 
Lastly, using the identification of Wiener-Hopf operators with 
Toeplitz operators (cf. [5]), our Theorem can be used to determine 
the invertibility of a certain class of Wiener-Hopf operators. 

We now describe the extension of our results to the vector valued 
case. Let S be a finite dimensional Hubert space and «£(8) the ring 
of bounded operators on (§. Let L\ denote the Hubert space of mea­
surable (S-valued functions on T having square integrable norm, H^ 
the corresponding Hardy space of functions in L% which have zero 
negative Fourier coefficients, and P the projection of L\ onto JH§. 
Further, let L^&) denote the ring of bounded measurable <£(8)-
valued functions on T and H® the Hardy space of functions in L^g) 
with zero negative Fourier coefficients. For <£ in L ^ we define the 
Toeplitz operator T$ on J H | by T$f = P($ / ) , where <£ƒ denotes the 
pointwise product. Finally, let Cj>(8) denote the space of continuous 
<C(S)-valued functions on T. 

THEOREM. If $ is in H£s + C£& then T* is a Fredholm operator 
if and only if 

lim inf | (det$)A(lfe") | = t\ > 0 

and this case 

ia(T*) = - lim i,((det$)A(Jfc*)). 

R -HI­

PROOF. We briefly describe the changes necessary in the proof given 

for the scalar case. We define Q a s the closed subalgebra of <£(H|) 
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generated by the T$ for <ï> in 23r£°(s) + C,£(s) a n d show g contains as 
an ideal, the ring 3C of compact operators on JH$. Further, we show 
that S/3C is isometrically isomorphic to the closed subalgebra 
flJB(8) + CjB(8) of L^(g). Again we show that 7r(r$) is invertible in 
g/3C if and only if it is invertible in £/X. Thus we find that T$ is a 
Fredholm operator if and only if det($) is an invertible element of 
H™ + C. Lastly, the index of T$ is computed using the fact that the 
determinant defines an isomorphism from the first homotopy group 
of the general linear group for S onto the first homotopy group of the 
space of nonzero complex numbers. 

Again using the isomorphism exhibited in [5] we can identify the 
operator T$ with a matrix valued Wiener-Hopf operator. In this 
context Gohberg and Kreïn proved the preceding theorem for $ in 
a certain subset of C^y 

Complete details will appear elsewhere along with extensions of 
the preceding results to the case of an infinite dimensional space S as 
well as to Toeplitz operators defined on certain other Banach spaces. 
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