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1. Let L? denote the Lebesgue space for the normalized measure
(1/27)dl defined on the unit circle T'= {e"" l 0 §0§21r}, let H? denote
the corresponding Hardy space of functions in L? which have zero
negative Fourier coefficients and let P be the projection of L2 onto
H?, For ¢ in L* we define the Toeplitz operator Ty on H? by Tf
=P(¢f) for f in H2. It is clear that T is bounded and this class of
operators has been much studied.

Much of the interest in Toeplitz operators has been directed to the
determination of their spectra. For ¢ in H* it was shown by Wintner
in [12] that the spectrum o(T'y) of T, is the closure of the range of the
analytic extension of ¢ to the unit disk D. For ¢ in the space C of
continuous functions on T it was shown by Devinatz [4] (see [10]
for earlier results) that o(7T'4) consists of the range of ¢ on T along
with those A for which the index of N with respect to the curve deter-
mined by ¢ is different from zero. In this note we describe ¢(7y) for
¢ in the linear span of H* and C. (This manifold is actually a closed
subalgebra of L=.) We show that such a Ty is invertible if its harmonic
extension ¢ to D is bounded away from zero on a neighborhood of T
and the index of the curve ¢(Re®) is zero for R sufficiently large. Our
technique can be viewed as an extension of that used in [6] to deter-
mine ¢(Ty) for ¢ in C.

In §3 we indicate how to extend our results to determine the index
of a certain class of vector-valued Toeplitz operators (or systems of
Toeplitz operators). In this we generalize certain of the results of
Gohberg and Krein in [7]. We conclude by describing how our results
can be applied to the study of Wiener-Hopf operators both in the
scalar case and the vector-valued case using the isomorphism exhib-
ited in [5].

We only outline our proofs and complete details will appear
elsewhere.

2. We begin by recalling some facts about Fredholm operators.
Let £ denote the algebra of bounded operators on H?, X the uni-
formly closed two-sided ideal of compact operators in &£, and = the
homomorphism of £ onto £/X. An operator 4 in £ is said to be a
Fredholm operator if 4 has a closed range and both a finite dimen-
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sional kernel and cokernel. It is known [1] that this is equivalent to
w(A4) being an invertible element of £/X. If 4 is a Fredholm operator,
then the analytical index 4,(4) is defined 4,(4)=dim [ker 4]
—dim [ker 4*], where ker ( ) denotes the kernel.

One reason the notion of index is important for determining the
invertibility of Toeplitz operators is the following fact proved by
Coburn [2].

LemMA 1. For ¢ in L* either ker T4 =(0) or ker Ty = (0).

Thus, if T4 is known to be a Fredholm operator, then Ty is inverti-
ble if and only if 4,(T4) =0. We shall show for ¢ in H*+4C that Ty is
a Fredholm operator if and only if ¢ is an invertible element of the
algebra H*+C. That H*+C is an algebra is a result due to Sarason
[9] which we state as a lemma.

LeEMMA 2. The linear span of H* and C is a closed subalgebra of L,
Moreover, the maximal ideal space of H*-+C is the maximal ideal space
of H*® with the unit disk removed.

Sarason shows in [9] that the linear span of H* and C is closed.
The observation that the “closure” of H*<C coincides with the
closed subalgebra of L* generated by H* and z allows us to conclude
that H*+C is an algebra and to identify its maximal ideal space. The
latter is a special case of the following proposition which is itself of
interest. Let X be a compact Hausdorff space and @ be a uniformly
closed subalgebra of the space C(X) of continuous complex functions
on X which separates points and contains the constants. Let ¢ be a
function on X having modulus one in @ and let @(&) denote the closed
subalgebra of C(X) generated by @ and ¢. Then the maximal ideal
space for @(J) is obtained from that of @ by deleting the open set on
which the Gelfand transform of ¢ has modulus less than one.

Now let G denote the uniformly closed subalgebra of £ generated
by the operators T’y with ¢ in H*--C. Note that g is not a C*-algebra.

LemMA 3. The algebra G contains X as a two-sided ideal and G/ XK is
isometrically isomorphic to H*+C.

Proor. Since G contains the C*-algebra generated by the unilateral
shift of multiplicity one, it follows from [3] that g contains X and %
is an ideal in any algebra of £ containing it. If p and ¢ are trigono-
metric polynomials and ¢ and { are functions in H®, then a straight-
forward computation shows that the commutator of Ty,, and Ty,
is compact. Thus the linear span of the operators of the form T4+K,
where ¢ isin H*-4Cand K is in &, is an algebra. That it is in fact a
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closed algebra follows from the inequality ||T4+K]|| Z||T4|| proved
in [2]. Therefore, G/% is commutative and the mapping T'y+ K<«
is an isometrical isomorphism of §/X onto H*4-C.

COROLLARY. If ¢ is in H*+C, then Ty—N\ is a Fredholm operator if
and only if ¢ —N\ is an invertible element of H* -+ C.

PRrROOF. If ¢ —A\ is an invertible element of H*+C, then it follows
from the preceding lemma that 73—\ is a Fredholm operator. Con-
versely, if T4—N\ is a Fredholm operator, then 7 (T4 —N\) is an inver-
tible element of £/X and we must show that its inverse is in §/X.
This can be shown for a ¢ in H* and the problem for an arbitrary ¢
in H*4-C is solved by approximating ¢ by a function of the form
2z~") where y is in H*.

The preceding result determines when 74—\ is a Fredholm oper-
ator. This combined with Lemma 1 will enable us to determine o(T'y)
when we have some effective method of determining the index of
Ts—N\. If ¢ is continuous, the index of T'y—\is equal to the negative
of the topological index 7:(¢, N) of the curve determined by ¢ with
respect to X (cf. [6]). In the case at hand we use the index of the
curves ¢(re®) where ¢ is the harmonic extension of ¢ to the interior
of D. To this end we need to relate the invertibility of ¢ in H*4-C to
the function ¢ on D.

LEMMA 4. A necessary and sufficient condition that ¢ in H*+C be
invertible is that ¢~ be in L* and for each €>0, there exists 6> 0 so that
|$@re®)| =1/||¢=Y| e —efor 1>r=1—8.

Proor. We again approximate ¢ by a function of the form z—% with
¢ in H* and analyze the inner and outer factors of Y.

LEmMMA 5. If T4—N\ is a Fredholm operator, then 4,(T¢—N\)
= —limg.1- 1:(¢(Re®), N).

ProoF. From the Corollary and Lemma 4 it follows that for Ty—Ma
Fredholm operator there exists 0<R<1 so that $(re®®)==\ for
1>7=R. Since ¢ is continuous on D we then have that ¢;(¢(re®?), \)
is constant for » = R so that the limit exists. The proof is now accom-
plished with the same technique used in the preceding proof.

We can now determine the spectrum of Ty for ¢ in H*+C.

THEOREM. For ¢ in H*4-C we have T 4 is invertible if and only if

lim inf | $re?)| =n>0
R—-1- 0560<2r; R=7<1

and
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lim i,($(Re®), 0) = 0.
R-1"

COROLLARY. For ¢ in H*+ C we have

o(Ty) = {A]lim inf | @re?) — \| = 0}
R—1" 050<2r;R=<r1

U A lim i @(Re®),N) # 0}

We make several comments before continuing to the vector valued
case. Firstly, although the statement of the Theorem makes sense
for an arbitrary ¢ in L* the Theorem is not valid in this generality.
Secondly, lim,.;_z:(¢(re®), \) =0 does not imply that T, is invertible
even for ¢ in H*. Thirdly, Widom has shown that o(7) is connected
for ¢ in L* (cf. [11]). We remark that it follows from the Corollary to
Lemma 3, Lemma 1 and the fact that the maximal ideal space of
H*+4C is connected [8] that ¢(T'y) is connected for ¢ in H*+C.
Lastly, using the identification of Wiener-Hopf operators with
Toeplitz operators (cf. [5]), our Theorem can be used to determine
the invertibility of a certain class of Wiener-Hopf operators.

We now describe the extension of our results to the vector valued
case. Let € be a finite dimensional Hilbert space and £(8) the ring
of bounded operators on . Let LE denote the Hilbert space of mea-
surable G-valued functions on T having square integrable norm, H§
the corresponding Hardy space of functions in L% which have zero
negative Fourier coefficients, and P the projection of L% onto Hg.
Further, let Lg, denote the ring of bounded measurable £(§)-
valued functions on T and Hg the Hardy space of functions in Lg,
with zero negative Fourier coefficients. For ® in Lg, we define the
Toeplitz operator T's on Hg by Tef =P(®f), where ®f denotes the
pointwise product. Finally, let Cg¢) denote the space of continuous
£(8)-valued functions on T.

THEOREM. If ® is in Hgy+Cgg then Ty is a Fredholm operator
if and only if

lim inf | (det ®)*(Re?)| =9 >0
R-1~ 059<27;Rsr<1

and this case
i.(Ts) = — lim 4,((det ®)" (Re®)).
R-1-

ProoF. We briefly describe the changes necessary in the proof given
for the scalar case. We define § as the closed subalgebra of £(Hg)
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generated by the T3 for ® in Hgy)+Ce) and show G contains as
an ideal, the ring & of compact operators on Hg. Further, we show
that /X is isometrically isomorphic to the closed subalgebra
Hge)+Ce) of Lgey. Again we show that w(T's) is invertible in
g/% if and only if it is invertible in £/%. Thus we find that Ts is a
Fredholm operator if and only if det(®) is an invertible element of
H=+C. Lastly, the index of Ts is computed using the fact that the
determinant defines an isomorphism from the first homotopy group
of the general linear group for € onto the first homotopy group of the
space of nonzero complex numbers.

Again using the isomorphism exhibited in [5] we can identify the
operator T's with a matrix valued Wiener-Hopf operator. In this
context Gohberg and Krein proved the preceding theorem for ® in
a certain subset of Cgy.

Complete details will appear elsewhere along with extensions of
the preceding results to the case of an infinite dimensional space € as
well as to Toeplitz operators defined on certain other Banach spaces.
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