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Planarity was introduced into algebra by Marshall Hall in his well-
known coordinatization of a projective plane by a planar ternary ring 
[4]. In [6], J. L. Zemmer defines a near-field to be planar when the 
equation ax~bx+c has a unique solution for a^b. In our investiga­
tion of planarity, we discovered that if (N, + , •) is a near-ring satis­
fying the above equational property, then (Nf + , •) is a near-field. 
(This was conjectured by both D. R. Hughes and J. L. Zemmer in 
private communications.) We present some extensions of this result 
together with geometric interpretations of "planar" near-rings. 

Definitions and notations. By a left distributive system is meant a 
triple (N, + , •) such that multiplication • is left distributive over 
addition + . Elements af bÇiN are called left equivalent multipliers, 
denoted by a^mb iffax—bx for all xÇiN. The relation s m is discrete 
when a^rnb implies a = ô. A left distributive system is said to possess 
the planar property if the equation ax~bx+c has a unique solution 
iora^mb. 

DEFINITION. A left distributive system (Nt + , •) with planar 
property is a planar system if 

(1) in (N, +) the right cancellation law is valid; 
(2) in (N, + ) there is an identity 0; 
(3) (N, •) is a semi-group; 
(4) there are at least three points in N9 no two of which are left 

equivalent multipliers. 

A planar system is integral if 0 is the only left zero divisor. 

Main results. Let (iV, + , •) be an integral planar system. Then 
0-# = x-0 = 0 for all #£iV. Let la be the solution to the equation 
a-x~a, a?*Qt and Ba— {xÇzN*\x'la~oc}, where N* denotes the 
nonzero elements of N. We have the following 

THEOREM 1. Let (N, + , •) be an integral planar system. Then 
(i) each (Bai •) is a group with identity 1«; 
(ii) the family {Ba}aeN* is pairwise disjoint) 
(iii) N* = l)aevBa; 
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(iv) N*BQ=Ba for each aGN*; 
(v) if a, c£:N*, then <j>: Ba-*BC defined by <j>(x) =x\c is an isomor-

phism; 
(vi) each 10 is a left identity for (iV, +» •)• 

COROLLARY. Let (iV, + , •) be a near-ring that is an integral planar 
system with ^m discrete. Then (N, + , •) is a planar near-field. 

PROOF. If a, b&N*, then l«=wl6-
In the sequel a near-ring that is an integral planar system will be 

called an integral planar near-ring. 

THEOREM 2. Suppose (N, + , •) is an integral planar near-ring and 
each "Ba = {0} VJBa is an additive normal subgroup. Also suppose that no 
Ha = N but any two 2*0, S c generate N under + . Then 

(i) each (Bai + , •) is a near-field; 
(ii) (Ba, + , •) is isomorphic to (Bc, + , •) if (x+y)le~xlc+ylcfor 

allx,y(EzBa; 
(iii) (N, + ) is abelian and is isomorphic to the direct sum "Ea ©5 C as 

groups; 
(iv) the points of N are the points of an affine plane A with the cosets 

of the Ba as lines; 
(v) the plane A can be coordinatized by a skew field. 

PROOF. The group (N, + ) is a«ï>(I, IV) group [5]. A * ( I , IV) group 
is abelian since x—>x+g induces a translation on A and so Axiom 4a 
is satisfied (p. 58 of [ l]) . Axiom 4bP (p. 63 of [l]) holds at OGN 
where x—Hx are the required dilatations. 

THEOREM 3. Suppose (N, + , •) is a finite integral planar near-ring 
and each Ba= {o}^JBa is an additive subgroup. Also suppose that no 
5 a = N but any two J50, 22c generate N under + . Then 

(i) (N, + ) is abelian; 
(ii) the affine plane A determined by N can be coordinatized by afield 

(F, +, •); 
(iii) each (Ba, + , •) is afield; 
(iv) each Ba = {(#, mx) |# £ F} for some m £ F9 or Ba 

- { ( 0 , x)\xEF}. 

PROOF. Each (Ba, + , •) is a near-field, hence (N, + ) is a £-group. 
Now (Bay + ) is contained in the center of (N, + ) for some aÇzN*, 
hence (N, + ) is abelian since i\T« S « + S c . A finite skew field is a field, 
and each (Ba, +, •) is isomorphic to the coordinization skew field. 

Examples. 1. Let(F, + , •) be a field. Define + x (X^O) by a+ xb~b 
if a = 0, a+\b=*a + Çkb) when a ?*0. Then (F, +x, •) is a non trivial 
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integral planar system where ssm is discrete and +x is not necessarily 
associative. 

2. Let (RXR, + ) be additive group of complex numbers. Define • 
by (a, b) • (c, d) =|| (a, J)|| (c, d) where || -|| is any norm on RXR* Then 
(RXR, + , •) is an integral planar near-ring. 

3. Let (RXR, + ) be as in 2. Define • by (a, b) • (c, d) = (a, 6)A(c, d) 
where (a, è)* =0 if a = ô = 0; otherwise (a, ô)* is the first nonzero co­
ordinate. Then (RXR, + , •) is an integral planar near-ring. 

4. Let (RXR, + ) be as in 2. Define * by (a, b)*(ct <Z) = 
(a, 6)/|)a, 6)| -(c, d) where | (a, 6)| = ( a 2 + i 2 ) ! / V 0 and • denotes 
the usual multiplication of complex numbers. If (a, 6)==(0, 0), then 
(a, b)*(c, d) = (0, 0). Then (i?Xi£,+, •) is an integral planar near-ring. 

5. Table 1 defines a multiplication • on the cyclic group (Z6, + ) 
such that (Z5, + , •) is an integral planar near-ring. Note that B\ 
= {l, 4}, 5 2 ={2, 3}. Define Bi=BiU{o} and 5 t 7 = l t + j , f » l , 2; 
iez6. if 

0 1 2 3 4 

0 

1 

2 

3 

4 

0 

0 

0 

0 

0 

0 0 0 

1 2 3 

4 3 2 

1 2 3 

4 3 2 

TABLE 1 

0 

4 

1 

4 

1 

we let I — Z$, then the B^ are circles of an inverse plane [3]. This 
example was obtained using a digital computer. (See [2].) 

It is of interest to graph the left identities and the Ba in each of the 
Examples 2,3, and 4. 
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