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Let X and Y be real Banach spaces, G a bounded open subset of X,
cl(G) its closure in X, bdry(G) its boundary in X. We consider map-
pings T, (nonlinear, in general), of cl(G) into Y which are A-proper,
in the sense defined below, with respect to a given approximation
scheme of generalized Galerkin type. We define a generalized concept
of topological degree for such mappings with respect to the given ap-
proximation scheme, and show that this degree (which may be multi-
valued) has the basic properties of the classical Leray-Schauder
degree (where the latter is defined on the narrower class of maps of
X into X of the form I+C, with I the identity and C compact).

For a wide class of 4-proper mappings T of the form T'=H+C,
with H an A-proper homeomorphism of a suitable type and C com-
pact, we show that the degree is single-valued and coincides with
another generalized degree studied in Browder [9] and Browder-
Nussbaum [11], and in particular is independent of the approxima-
tion scheme involved. In particular, this holds if H is strongly accretive
from X to X (cf. Browder [4], [5], [6], [8]), including as a very spe-
cial case all maps H of the form H=1I— U, with U a strict contraction.

DEeFINITION 1. Let X and Y be Banach spaces. By an (oriented)
approximation scheme for mappings from X to Y, we mean: an increas-
ing sequence {X,,} of oriented finite dimensional subspaces of X, an
increasing sequence { Y.} of oriented finite dimensional subspaces of Y,
and a sequence of linear projection maps { Qn} with Q. mapping Y on
Y, such that dim(X,) =dim(Y,) for all n, U, X, is dense in X, and
Quy—y as n— for all yin Y.

DEFINITION 2. Let G be a bounded open subset of X, T a mapping of
cl(G) into Y. Then T is said to be A-proper with respect to a given ap-
proximation scheme in the sense of Definition 1 if for any sequence an,}
of positive integers with nj— o and a corresponding sequence \Xn;{ in
cl(G) with each x,; in X,; such that Qu;Tx.; converges strongly in Y to
an element vy, there exists an infinite subsequence {nj(k)} such that
Xn;q, COnverges strongly to x in X as k— o« and T'(x)=y.

The concept of 4-proper mapping is a slight variant of the condi-
tion (H) of Petryshyn [18], and both are modifications of the defini-
tion of P-compact mapping in Petryshyn [15], [16], and [17]. A sim-
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ilar definition has been given for strongly closed mappings by Pohoj-
hayev [20].

DEFINITION 3. Let T be an A-proper continuous mapping from cl(G)
to Y with respect to a given approximation scheme, and let a be a point
of Y—T(bdry(G)). Let Go=GNXn, and let To=0Q.T| a,.

We define Deg(T, G, a), the degree of T on G over a with respect to
the given scheme, as follows: Let Z' be the set of all integers (positive,
negative, and zero) together with {+»} and {—o}. Then
Deg(T, G, a) is the subset of Z' given by:

(1). The integer m lies in Deg(T, G, a) if there exists an infinite se-
quence of positive integers n such that deg(Tn, Gu, Qua) is well-defined
and equals m.

(2). *+ » lies in Deg(T, G, a) if there exists an infinite sequence of
integers {m;} with nj— oo such that deg(Tw,, Gn;, Qn;a) is well-defined
for each j and deg(Tn;, Gr;, Qn;a0)— + © as j— .

(The degree deg(T, G, Qna) used in Definition 3 is the classical
Brouwer degree for mappings of oriented finite dimensional Euclidean
spaces of the same dimension.)

Using the properties of the Brouwer degree and of A-proper maps,
we obtain a direct and simple proof of the following theorem:

THEOREM 1. Let X and Y be Banach spaces, G a bounded open subset
of X, T an A-proper continuous mapping of cl(G) into Y with respect
to a given approximation scheme. Let a be a point of ¥ —T (bdry(G)),
and let Gu=GNXn, Tn=QuT| a,. Then:

(@) There exists an integer no=1 such that for n = ny, Qna does not lie
in Tn(bdry G,). Hence for such n, deg(Tn, Ga, Qua) s well-defined, and
in particular, Deg(T, G, a) is a nonempty subset of Z'.

(b) If Deg(T, G, a)s= {0}, there exists an element x of G such that
T(x) =a.

(c) Let T be a continuous mapping of cl(G) X [0, 1] into Y, and for
each t, let Ty(x) =T (x, t). Suppose that T is uniformly continuous in t
on [0, 1], and that for each t, T, is A-proper with respect to a fixed
approximation scheme from X to Y. Then if a lies in ¥ —T (bdry(G)
X [0, 1]), it follows that Deg(T:, G, a) is independent of tin [0, 1].

(d) Let G=Gi\IG, and for G'=(GiNG:)\Ibdry(Gr)\Ibdry(G,),
suppose that T(G') does not contain a. Then

Deg(T, G, a) C Deg(T’ Gy, a) + Deg(T, Gy, a),

with equality holding if either Deg(T, G, a) or Deg(T, G, a) is a single-
ton integer. (We use the convention that © — « =2'))

Theorem 1 has as corollaries a number of interesting fixed point
and mapping theorems for A-proper mappings. In the present discus-
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sion, we focus on an important special case for which the degree as
defined in Definition 3 is single-valued.

THEOREM 2. Let X and Y be Banach spaces, G a bounded open subset
of X, T a continuous A-proper mapping of cl(G) into ¥, a€Y
—T(bdry G). Suppose that we are given an approximation scheme in
the sense of Definition 1 and T =H+C, where C maps cl(G) into a rela-
tively compact subset of ¥V and H maps G homeomorphically onto an
open subset H(G) of Y, carrying cl(G) homeomorphically onto cl(H(G)).
Let H,=QuH, Co=0.C, Tn=H,+C,, with all these mappings re-
stricted to cl(G,) where Go=GNX,. Suppose that for each n, H, is an
orientation preserving homeomorphism of G, into Y, and that the follow-
ing condition holds:

(c) There exists a continuous, strictly increasing function a(r) for
r 20 with a(0) =0 such that for all n and each pair u and v in cl(Gn),

1Eaw) — Ha@| 2 alu — o).
Then there exists ny =1 such that for n = ny,
deg(T s, Gn, Qna) = deg(I + CHY, H(G), a).
In particular, Deg(T, G, a) = {deg(I+ CH-1, H(G), a)}.

CoROLLARY TO THEOREM 2. The conclusion of Theorem 2 holds in
the case in which X =Y and T =H+-C, with C compact and H strongly
accretive on X, t.e.

(Hu — Ho,J(u ~ 9)) Z ¢(|u — o))

for a continuous strictly increasing function c(r) for r =0 with ¢(0) =0,
and J a duality mapping of X into X* satisfying the conditions (Ju, u)
=||J4||-||ul| and |Ju|| =¢(|u|l) for a continuous strictly increasing
Sfunction ¥ with Y(0) =0. We must assume in addition that the family
of projections Q, has H Q,,H =1 for all n, and that either X* is uniformly
convex or that H is uniformly continuous on bounded subsets of X. (The
latter case includes H=1I— U, with U a sirict coniraction.)

Proor oF THEOREM 2. Since T" is A-proper, we may assume that
for all #, Q,a does not lie in T, (bdry G,) so that deg(T,, Gn, Qna) is
well-defined. Since H, is an orientation preserving homeomorphism
of G, into Y, wehave:deg(T,, Gy, Qna) =deg(I+ C,H;t, H,(G,), Q.a).

LEMMA 1. There exists d>0 such that for n=n,, with ne sufficiently
large, H T,.u—Q,.a” =d for all u in bdry(G,). Hence we may replace the
compact map C by Q.C and the point a by Qua for a sufficiently large
integer m without changing either of the degrees in the conclusion of The-
orem 2 for n=n,.
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Proor oF LEMMA 1. The second assertion follows from the first,
along with standard properties of the degree. Suppose that the first
assertion is false. Then there exists a sequence {n,— with n;— 0 and
a sequence {u,,j} with #,;&bdry(G,;) such that | T,.j(u,,,)—Q,,,.(a)”
—0. Since T is A-proper, we may assume that u,; converges strongly
to % in X and that Tw =a. Since each u,, lies in bdry(G), # must lie in
bdry(G). By hypothesis, there are no points in bdry(G) for which
Tu=a. q.ed.

LemMA 2. Let U be any neighborhood in H(G) of the set Ki= { vlv
E€H(G), v=H(u), where T(u) =a}. Let S, be the mapping of H,(G,)
into Y given by Syu=Q,CH;*(u). Then there exists ns=1 such that for
n=ns, any point v, in H,(Gn) such that (I+S,) (v,) = Qna must lie in the
given meighborhood U.

Proor oF LEMMA 2. Suppose not. Then there will exist an infinite
sequence {v,;} with v,;€H,;(G.;) and n;— such that v,,+Sav,;
= Qn,a with each v,; outside of U. Let 2,;,=H, s, 2,,&Gn;. Then

-1
Tnj(znj) = Un; + anHn,' Uy = Qn,'a-

Since T is A-proper, we may pass to an infinite subsequence and
assume that z,; converges strongly to an element z of G for which
Tz=a. Hence v,; = Q,;H(2,;) converges strongly to H(z), which lies in
K. Since U is a neighborhood of Kj, this contradicts the fact that all
the v, lie outside of U. q.e.d.

LeMMA 3. The set K, defined in Lemma 2 is compact, and there exists
a neighborhood U, of K, and an integer ny such that for n=n4, Uy is con-
tained in Q;(H,(G,)).

Proor oF LEMMA 3. The compactness of K; follows easily from the
fact that T is A-proper. Suppose the remainder of the assertion of
Lemma 3 were not true. Then there would exist a sequence {y,,,} for
n;— o such that dist(y,; Ki1)—0 for which Q.;y.; does not lie in
Qn;(H(GNX,,)). Since K, is compact, we may assume that y,; con-
verges strongly as j—« to an element y of K;. Since KyC H(G), we
may assume that each y,, lies in H(G) and form w,; = H~'(y,;). By the
continuity of H~!, w,,—w where H(w) =y, and T'(w) =a.

For each n, we set ¢, =2 dist(K1, H(G,)). Then ¢,—0 as n— », and
for each y,, in the preceding paragraph, we may find #,; in G, such
that ||ya;—H(%s,)|| Sen;. The hypothesis of Theorem 2 implies that
there exists a constant ¢>0 such that ||Q.]| ¢ for all #. Hence,
|| @n 998 ; = Qn;H () || S cen,. Since bdry(Ha(Gn)) =H,(bdry G,) for all
n, it follows that dist(yn;, Ha;(bdry Gi;)) Sce,;. Hence, we may find
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elements v, in bdry G, such that ||Qn¥s;— Qs,H(va,)]|—0. Since T
is A-proper, so is H=T~C. Passing to an infinite subsequence, we
may assume that v,; converges strongly to an element v of bdry G for
which H(v) =y, i.e. v=w and T'(v) =a. This is a contradiction, proving
the lemma. q.e.d.

Proor orF THEOREM 2 COMPLETED. By Lemma 1, we may assume
that for n=n;, 0.C=C and Q,a =a. We know that

deg(Tny Guy Qna) = deg(l + CulHy ', Ha(Gn), Qnt),
and that

dn = deg(I + CoHy', Ha(Gn), Q) = deg(I + CH. Quy On (Ha(Gw)), 0).
We wish to show this last degree to be equal to
6 = deg(I + CH™Y, H(G), Qna) = deg(I + CH™*, H(G), a).

By Lemmas 2 and 3, we may choose a neighborhood U of K, in H(G)
such that: UCQ;Y(H,(G,)), while for any v, in H,(G,) such that
(I+CoH;71) (vn) = Qua, we have v,& U. By Lemma 1, we may assume
that a=Qna, C=Q,C. Hence for any v in Q;1(H,.(G,)) such that
v+ CH,; Qv =a, we have v&E V,, and Q,v =v so that v lies in H,(G,).
Thus,

dn=deg(I + CHy' , UN YV, a); & =deg( +CH ', UN YV, a).

It suffices by the properties of the degree (e.g. [14]) to show that the
mappings CH,;' converge uniformly to the mapping CH™! on the
compact set K3 which is the closure of UNY,, in H(G).

Let uEKs, and set w=CH-1(u), w,= CH;Y(u), x=H"Yu), %,
=H.1(u). The set K,=H"1(Kj;) is a compact subset of G, and hence
dist(K4, G.) =2¢,—0. Therefore, we may find v, in G, such that
|| —4| < €. Since every continuous mapping is uniformly continu-
ous at the points of a compact subset of its domain, there exists a
sequence 3,—0 such that for all # in K; and the corresponding point
%, | H(x) —H(y)|| £B». Since H(x) =u and || Q.|| <¢, we have

[ Ea(en) = HaGo)]| = [l — QB G| = (|4 — Qua]| + 8.

Since K is compact, there exists {»—0 such that |[u—Q.u|| S¢a for
% in K. Applying the condition (c) of the hypothesis of Theorem 2,
we obtain

a(”xﬂ - yﬂ“) = llHn(xn) - Hn(yn)“ S Bn + &ny
so that
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llz = @all < e = 30ll +[l9a = @all < e + &80 + $) =0,

so that H;'u converge uniformly to H-'u on Kj;. Finally, C is con-
tinuous from cl(G) to Y and hence uniformly continuous at points
of the compact set K, Hence CH,!'(x) converges uniformly to
CH-Y(u) for u in K. q.e.d.
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