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Let X and F be real Banach spaces, G a bounded open subset of X, 
cl(G) its closure in X, bdry(G) its boundary in X. We consider map­
pings T, (nonlinear, in general), of cl(G) into Y which are A-proper, 
in the sense defined below, with respect to a given approximation 
scheme of generalized Galerkin type. We define a generalized concept 
of topological degree for such mappings with respect to the given ap­
proximation scheme, and show that this degree (which may be multi­
valued) has the basic properties of the classical Leray-Schauder 
degree (where the latter is defined on the narrower class of maps of 
X into X of the form 7 + C , with I the identity and C compact). 

For a wide class of A -proper mappings T of the form T—H+C, 
with H an A -proper homeomorphism of a suitable type and C com­
pact, we show that the degree is single-valued and coincides with 
another generalized degree studied in Browder [9] and Browder-
Nussbaum [ l l ] , and in particular is independent of the approxima­
tion scheme involved. In particular, this holds if H is strongly accretive 
from I t o J (cf. Browder [4], [5], [ó], [8]), including as a very spe­
cial case all maps H of the form H^I—U, with U a strict contraction. 

DEFINITION 1. Let X and Y be Banach spaces. By an (oriented) 
approximation scheme for mappings from X to F, we mean: an increas­
ing sequence {Xn} of oriented finite dimensional subspaces of X, an 
increasing sequence { Yn} of oriented finite dimensional subspaces of F, 
and a sequence of linear projection maps {Qn} with Qn mapping Y on 
Yn such that d im(X n )=d im(F n ) for all n, (JnXn is dense in X, and 
Qny-*y as n—> oo for all y in Y. 

DEFINITION 2. Let G be a bounded open subset of X, Ta mapping of 
cl(G) into F. Then T is said to be A-proper with respect to a given ap­
proximation scheme in the sense of Definition 1 if for any sequence \tij} 
of positive integers with nj—><x> and a corresponding sequence [xnj\ in 
cl(G) with each xnj in Xnj such that QniTxnj converges strongly in Y to 
an element y, there exists an infinite subsequence {n^)} such that 
XnHh) converges strongly to x in X as k—><*> and T(x) =y. 

The concept of A -proper mapping is a slight variant of the condi­
tion (H) of Petryshyn [18], and both are modifications of the defini­
tion of P-compact mapping in Petryshyn [ l5] , [16], and [17]. A sira-
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ilar definition has been given for strongly closed mappings by Pohoj-
hayev [20]. 

DEFINITION 3. Let T be an A-proper continuous mapping from cl(G) 
to Y with respect to a given approximation scheme, and let a be a point 
of F-r(bdry(G)). Let Gn^GC\Xn, and let Tn~QnT\ 0n. 

We define Deg{T, G, a), the degree of T on G over a with respect to 
the given scheme, as follows: Let Z' be the set of all integers {positive, 
negative, and zero) together with { + 00} and {— 00}. Then 
Deg(T, G, a) is the subset of Z' given by: 

(1). The integer m lies in Deg(jT, G, a) if there exists an infinite se­
quence of positive integers n such that deg(Tn, Gny Qna) is well-defined 
and equals m. 

(2). ± 00 lies in Deg(T, G, a) if there exists an infinite sequence of 
integers {n3} with %—>oo such that deg(Tnj, Gnj, Qnfl) is well-defined 
for eachj and deg(Tnj, Gnp Qnja)-*± 00 asj~><x>. 

(The degree deg(rw, Gn, Qna) used in Definition 3 is the classical 
Brouwer degree for mappings of oriented finite dimensional Euclidean 
spaces of the same dimension.) 

Using the properties of the Brouwer degree and of A -proper maps, 
we obtain a direct and simple proof of the following theorem: 

THEOREM 1. Let X and Y be Banach spaces, G a bounded open subset 
of X, T an A-proper continuous mapping of cl(G) into Y with respect 
to a given approximation scheme. Let a be a point of F— 3H(bdry((•?)), 
and let Gn = Gr\Xn, Tn = QnT\ cn. Then: 

(a) There exists an integer n0 ̂  1 such that for n è ^0, Qna does not lie 
in rn(bdry Gn). Hence for such n, deg(Tnt Gn, Qna) is well-defined, and 
in particular, Deg(T, G, a) is a nonempty subset of Z'. 

(b) If Deg{T, G, a)5^ {o}, there exists an element x of G such that 
T(x)=a. 

(c) Let T be a continuous mapping of cl(G) X [0, l ] into Y, and for 
each t, let Tt(x) = T(x, t). Suppose that T is uniformly continuous in t 
on [O, l ] , and that f or each t, Tt is A-proper with respect to a fixed 
approximation scheme from X to Y. Then if a lies in F—T(bdry(G) 
X [O, l]), it follows that Deg(Tt, G, a) is independent of t in [O, l ] . 

(d) Let G = Gx\JGi, and for G, = (GinG2)Ubdry(Gx)Ubdry(G2)J 

suppose that T(G') does not contain a. Then 

Deg( J1, G, a) C Deg(?\ Gi, a) + Deg(2\ G2, a), 

with equality holding if either Deg(T, G\, a) or Deg(7\ G2, a) is a single­
ton integer. {We use the convention that 00 — 00 =Z\) 

Theorem 1 has as corollaries a number of interesting fixed point 
and mapping theorems for A -proper mappings. In the present discus-
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sion, we focus on an important special case for which the degree as 
defined in Definition 3 is single-valued. 

THEOREM 2. Let X and Y be Banach spaces, G a bounded open subset 
of X, Ta continuous A-proper mapping of cl(G) into Y, a Ç F 
— T(bdry G). Suppose that we are given an approximation scheme in 
the sense of Definition 1 and T = H+C, where C maps cl(G) into a rela­
tively compact subset of Y and H maps G homeomorphically onto an 
open subset H(G) of F, carrying cl(G) homeomorphically onto cl (H(G)). 
Let Hn~QnH, Cn — QnC, Tn—Hn + Cn, with all these mappings re­
stricted to cl(Gn) where Gn = Gr\Xn. Suppose that for each n, Hn is an 
orientation preserving homeomorphism of Gn into F« and that the follow­
ing condition holds: 

(c) There exists a continuous, strictly increasing function a(r) for 
r _ 0 with a(0) =0 such that for all n and each pair u and v in cl (£?,»), 

\\Hn(u) - EM\ à «(||« - *||)-
Then there exists n{^\ such that for n^ni, 

deg(Tn, Gn, Qna) « deg(J + CH~\ H(G), a). 

In particular, Deg(T, G, a) = {degil+CH^1, H(G), a)}. 

COROLLARY TO THEOREM 2. The conclusion of Theorem 2 holds in 
the case in which X= Y and T = H+C, with C compact and H strongly 
accretive on X, i.e. 

(flu - Hv,J(u - v)) £ c(\\u - t>||) 

for a continuous strictly increasing function c(r) for r*z0 with c(0) — 0, 
and J a duality mapping of X into X* satisfying the conditions (Ju, u) 
= || Ju\\ -\\u\\ and \\Ju\\=\l/(\\u\\) for a continuous strictly increasing 

function \f/ with \//(0) = 0. We must assume in addition that the family 
of projections Qn has ||(?n|| = 1 for all n, and that either X* is uniformly 
convex or that H is uniformly continuous on bounded subsets of X. (The 
latter case includes H—I—TJ, with U a strict contraction.) 

PROOF OF THEOREM 2. Since T is A -proper, we may assume that 
for all n, Qna does not lie in Tn(bdry Gn) so that deg(rn, Gn, Qna) is 
well-defined. Since Hn is an orientation preserving homeomorphism 
ofGninto Fn,wehave:deg(rn,Gn,Qna) = deg(I+CnHfl,Hn(Gn), Qna). 

LEMMA 1. There exists d>0 such that for n^ni, with n% sufficiently 
large, \Tnu — Qna\\ èzd for all u in bdry(Gn). Hence we may replace the 
compact map C by QnC and the point a by Qma for a sufficiently large 
integer m without changing either of the degrees in the conclusion of The­
orem 2 for n = ni. 
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PROOF OF LEMMA 1. The second assertion follows from the first, 
along with standard properties of the degree. Suppose that the first 
assertion is false. Then there exists a sequence {rij ) with Wy—> <*> and 
a sequence {unj} with unjE.bdry(Gnj) such that | [ r n i («»,) — ö^(a) | | 
—>0. Since T is A -proper, we may assume that unj converges strongly 
to u in X and that Tu —a. Since each unj lies in bdry(G), u must lie in 
bdry(G). By hypothesis, there are no points in bdry(G) for which 
Tu~ a. q.e.d. 

LEMMA 2. Let U be any neighborhood in H(G) of the set K\— {v\v 
ÇzH(G), v = H(u), where T(u)=a}. Let Sn be the mapping of Hn(Gn) 
into Y given by Snu = QnCHz~l(u). Then there exists n^^l such that for 
n ^ w3, any point vn in Hn(Gn) such that (I+Sn) (vn) = Qna must lie in the 
given neighborhood U. 

PROOF OF LEMMA 2. Suppose not. Then there will exist an infinite 
sequence {vn.} with vnj^Hnj(Gnj) and »/,—>«> such that vnj+SnjVnj 
— Qnfl> with each vni outside of U. Let znj — Hn.vnjf znjÇzGnj. Then 

•* nj\%nj) == Vrij i ysnjAlnj'Unj === {stijd* 

Since T is A -proper, we may pass to an infinite subsequence and 
assume that znj converges strongly to an element z of G for which 
Tz = a. Hence vni~QniH(zn3) converges strongly to H(z), which lies in 
K\. Since U is a neighborhood of Ku this contradicts the fact that all 
the vn. lie outside of U. q.e.d. 

LEMMA 3. The set K\ defined in Lemma 2 is compact, and there exists 
a neighborhood U\ of K\ and an integer w4 such that for n è #4, Ui is con­
tained in Q^l{Hn(Gn)). 

PROOF OF LEMMA 3. The compactness of K\ follows easily from the 
fact that T is A -proper. Suppose the remainder of the assertion of 
Lemma 3 were not true. Then there would exist a sequence \ynj\ for 
«y—»» such that dist(;yWi, i£i)—>0 for which Qnjynj does not lie in 
Qni(H(Gr\Xnj)). Since K\ is compact, we may assume that ynj con­
verges strongly as ƒ—>oo to an element y of Ki. Since K\QH{G)t we 
may assume that each yn. lies in H(G) and form Wnj^H-"1^.). By the 
continuity of if"1, wnj—>w where H(w) =y , and T(w) —a. 

For each n, we set en = 2 dist(i£i, H(Gn)). Then €n—>0 as n-* oo, and 
for each ynj in the preceding paragraph, we may find uni in Gn} such 
that U^ny—H(unj)\\ ^enj. The hypothesis of Theorem 2 implies that 
there exists a constant c>0 such that | |Q»||^c for all n. Hence, 
\\Qn/yn,-~QnJH(unJ)\\£ceHi. Since bdry(ifw(Gn)) =if n(bdry Gn) for all 
n, it follows that dist^»,., Hni(bdry Gnj))Scenj. Hence, we may find 
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elements vnj in bdry G»y such that ||ô»y?ny —Qnylï(»ny)||--»0. Since T 
is A -proper, so is H=T—C. Passing to an infinite subsequence, we 
may assume that vnj converges strongly to an element v of bdry G for 
which H(v) = y, i.e. z; = wand T(v) = a . This is a contradiction, proving 
the lemma. q.e.d. 

PROOF OF THEOREM 2 COMPLETED. By Lemma 1, we may assume 
that for neurit, QnC~C and Qna = a. We know that 

deg(rn , Gn, Qna) = deg(/ + CnHn\ Hn(Gn), Qna)9 

and that 

dn - deg(7 + C n # n \ Hn(Gn), Qna) = deg(/ + CHn
lQn, Qn\Hn(Gn))t a). 

We wish to show this last degree to be equal to 

Ô - deg(/ + CH-\ H(G), Qna) = deg(/ + CH-\ #(G), a). 

By Lemmas 2 and 3, we may choose a neighborhood U of j£i in H{G) 
such that : U<ZQïrl(Hn{Gn)), while for any z;n in Hn(Gn) such that 
(J+Cn-ffîT1)^) =Çw^, we have z;n£ C7. By Lemma 1, we may assume 
that a~Qma, C=QmC. Hence for any v in Q^l(Hn(Gn)) such that 
v + CH^QnV^a, we have v(~ Yn and Qnv—v so that v lies in Hn(Gn). 
Thus, 

4 » deg(/ + C # ; \ U H Fm, a) ; 2 - deg(/ + Cfl"1, *7 Pi Fm, a). 

I t suffices by the properties of the degree (e.g. [14]) to show that the 
mappings CHn1 converge uniformly to the mapping CBr1 on the 
compact set K.% which is the closure of UC\ Ym in H(G). 

Let w£i£3 , and set w — CH~l{u), wn = C^n""1(w), x — H~l(u)t xn 

~H^l(u). The set K^ = H~1{Kz) is a compact subset of G, and hence 
dist(2£4, Gn) ==2€n—>0. Therefore, we may find yn in Gn such that 
||#—• 3>n|| =§€». Since every continuous mapping is uniformly continu­
ous at the points of a compact subset of its domain, there exists a 
sequence j8n~-»0 such that for all u in K$ and the corresponding point 
x, \\H(x)—H(yn)\\ ^ /? n . Since H(x) ~u and ||Q»|| £*c, we have 

\\Bn(Xn) - Hn(yn)\\ = | | * - QnH(yn)\\ S \\u - Q»«|| + & . 

Since i£3 is compact, there exists fw-»0 such that ||w —Qn^|| =ifn for 
u in ÜT3. Applying the condition (c) of the hypothesis of Theorem 2, 
we obtain 

« ( I K - Vn\\) S \\Hn(Xn) - Hn(yn)\\ =g 0n + fn, 

so that 
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| |» - *n|| â | |« ~ JW|| + | | y . - Xn\\ ^ €n + oTl(fin + f») ~+ 0, 

so that H^u converge uniformly to H~-lu on i£3. Finally, C is con­
tinuous from cl(G) to F and hence uniformly continuous at points 
of the compact set i£4. Hence CHnl{u) converges uniformly to 
CH~~l(u) for u in Kz. q.e.d. 

BIBLIOGRAPHY 

1. F. E. Browder, Fixed point theorems for non-compact mappings in Hubert space, 
Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1272-1276. 

2. 1 Nonlinear operators in Banach spaces, Math. Ann. 162 (1966), 280-283. 
3. , Fixed point theorems for nonlinear semicontractive mappings in Banach 

spaces, Arch. Rational Mech. Anal. 21 (1966), 259-269. 
4. , Nonlinear accretive operators, Bull Amer. Math. Soc. 73 (1967), 470-476. 
5. , Nonlinear equations of evolution and nonlinear accretive mappings in 

Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 867-874. 
6. — -, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, 

Bull. Amer. Math. Soc. 73 (1967), 875-881. 
7. — , Semicontractive and semiaccretive nonlinear mappings in Banach spaces, 

Bull. Amen Math. Soc. 4 (1968), 600-665. 
g# 1 Nonlinear operators and nonlinear equations of evolution in Banach 

spaces, Proc. Sympos. Nonlinear Functional Analysis, Amer. Math. Soc, April 1968 
(to appear). 

9 . <— — , Topology and nonlinear functional equations, Studia Math, (to appear). 
10. F. E. Browder and D. G. de Figueiredo, J-monotone nonlinear operators in 

Banach spaces, Proc. Konin. Nederl. Akad. Wet. 28 (1966), 412-420. 
11. F. E. Browder and R. Nussbaum, The topological degree for noncompact non­

linear mappings in Banach spaces, Bull. Amer. Math. Soc. 4 (1968), 671-676. 
12* R. L. Frum-Ketkov, On mappings of the sphere in Banach space, DokL Akad. 

NaukSSSR, 175 (1967), 1229-1231.-Soviet Math, DokL 8 (1967). 
13. J. Leray and J. Schauder, Topologie et equations fonctionelles, Ann. Sci. 

Ecole Norm Sup. 51 (1934), 45-73. 
14. M. Nagumo, Degree of mapping in convex linear topological spaces, Amer. J. 

Math. 73 (1951), 497-511. 
15. W. V. Petryshyn, On a fixed point theorem for nonlinear P-compact operaion in 

Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 329-334. 
16. , On nonlinear P-compact operators in Banach spaces with applications 

to constructive fixed-point theorems, J. Math. Anal. Appl. 15 (1966), 228-242. 
17. , Further remarks on nonlinear F-compact operators in Banach spaces, 

J. Math. Anal. Appl. 16 (1966), 243-253. 
18. , On the approximation solvability of nonlinear equations, Math. Ann. 

177(1968), 156-164. 
19. W. V. Petryshyn and T. Tucker, On functional equations involving nonlinear 

generalized P-compact operators, Trans, Amer. Math. Soc. (to appear). 
20. S. I. Pohojhayev, On the solvability of nonlinear equations with odd operators, 

Funct. Anal. Appl. 1 (1967), 66-73. 

UNIVERSITY OF CHICAGO AND RUTGERS UNIVERSITY 


